

- **1)** LS-Regler optimale Leistungsausnutzung
- Wiege hydrostatisch gelagert
- Kolben-Gleitschuhverbindung 21° Schwenkwinkel
- Gehäuse einteilig mit hoher Steifigkeit
- 5 Steuerbodenaufnahme hoher Integrationsgrad
- 6 Stellkolben langlebig und präzise
- **Durchtrieb** für weitere Pumpen
- 8 Zylinderblock kompakt durch 21° Technologie
- 9 Sauganschluss gutes Saugverhalten auch ohne Tankvorspannung
- Druckpulsationsminderung über gesamten Betriebsbereich, wartungsfrei

Konstruktionsmerkmale

- >> Hochdruck-Axialkolbenpumpe in Schrägscheiben-Bauart für den offenen Kreis
- >> Rechts- oder Linkslauf
- >> selbstansaugend mit hoher Nenndrehzahl
- >> weitere Drehzahlsteigerung durch Tankvorspannung bzw. Schwenkwinkelreduzierung möglich
- >> adaptive Geräuschoptimierung SPU
- >> Dekompressionsöl zur Beruhigung der Saugseite über Gehäuse abgeführt
- >> exakte, schnelle und robuste Load Sensing-Regler
- >> SAE Hochdruckanschlüsse
- >> SAE Flansch mit ANSI oder SAE Profilwelle
- >> Durchtrieb SAE A, B, B-B, C, D und E
- >> Tandem- und Mehrfachpumpen optional

Produktvorteile

- >> energiesparender Betrieb durch Bedarfsstrom-Regelung
- >> dynamisches Stellverhalten
- >> hervorragende Saugfähigkeit
- >> geräuschoptimiert über gesamten Betriebsbereich
- >> optimales Zusammenspiel mit Linde LSC-Wegeventilen und LinTronic
- >> kompakte Bauweise
- >> hohe Leistungsdichte
- >> hohe Druckbelastbarkeit
- >> hohe Zuverlässigkeit
- >> lange Lebensdauer

Produktprogramm Linde Hydraulics.

Finden Sie die richtigen Produkte für Ihre Anwendung.

Produktprogramm

Produkt		Anwendung	Linde Terminologie
Pumpe	Regelpumpe	offener Kreislauf	HPR-02
	Verstellpumpe	geschlossener Kreislauf	HPV-02
Motor	Verstellmotor	geschlossener und offener Kreislauf	HMV-02, CMV
	Regelmotor	geschlossener und offener Kreislauf	HMR-02
	Konstantmotor	geschlossener und offener Kreislauf	HMF-02, CMF
		offener Kreislauf	HMF-02 P
		geschlossener und offener Kreislauf	HMA-02
Ventiltechnik	Baukasten-Steuerplatte	offener Kreislauf	VT modular
	Monoblock	offener Kreislauf	Monoblock
Elektronik	Steuereinheiten	geschlossener und offener Kreislauf	iCon
	Software	Diagnose und Parametrierung	LinDiag®

Inhalt HPR-02.

Allgemeine technische Daten	4	>> E1L. LS mit elektrischer Übersteuerung	24
Betriebsparameter		>> H1L. LS mit hydraulischer Übersteuerung	25
>> Empfehlungen zur Lebensdauer	6	>> Elektrische Eigenschaften	26
>> Tankanschluss, Filterung, Einbaulage	7	>> Regler mit Wegrückmeldung	27
>> Druckflüssigkeiten	8	>> TL2. LS mit hyperbolischer Leistungsbegrenzung	29
Linde LSC-System	9	>> LEP. LS mit elektrischer Volumenstrombegrenzung	
Geräuschreduzierung. SPU Speicherumsteuerung	10	und Druckabschneidung	30
Momentenübertragung	12	>> ETP. Elektrische Volumenstromvorgabe,	
>> Anbauflansch	13	Leistungsbegrenzung und Druckabschneidung	31
>> Antriebswelle	14	Maße	
>> Einheiten nach ISO 3019-2 und SAE J617a	15	>> Regler	32
>> PTO-Durchtrieb	16	>> Einzelpumpe HPR-02 für LP, E1L, H1L	38
>> PTO-Anbaumöglichkeiten und Abtriebswelle	17	>> Einzelpumpe HPR-02 für TL2, LEP, ETP	40
Zahnradpumpen	18	>> Doppelpumpen und Einschubeinheiten	42
Regler	20	>> Mehrfachpumpen	44
>> LS. Load Sensing	21	Merkmale Baukasten	46
>> LP. LS mit Maximaldruckregelung	22	Medienverzeichnis	47
>> E1L/H1L. LS mit Übersteuerung	23	Kontakt	48
-		-	

Die diesem Datenblatt zugrunde liegenden Daten entsprechen dem aktuellen Entwicklungsstand. Technische Änderungen vorbehalten. Verbindlich sind die Angaben der jeweiligen Einbauzeichnungen. Die in diesem Datenblatt aufgeführten Eigenschaften sind nicht generell in allen Kombinationen und Nenngrößen verfügbar. Unsere Vertriebsingenieure unterstützen Sie gerne bei der Auslegung Ihres Hydrauliksystems und der Produktauswahl.

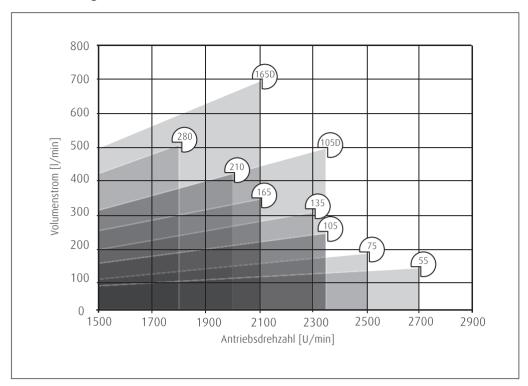
Allgemeine technische Daten.

Übersicht technische Daten

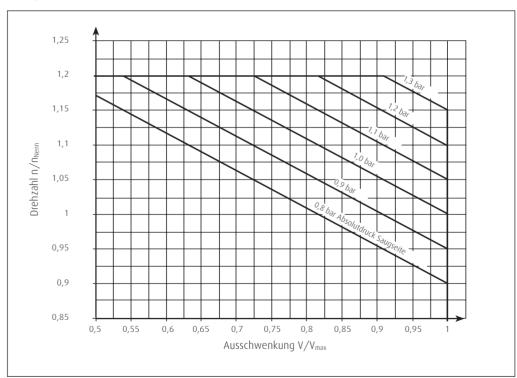
				55	75	105	135	165	210	280	105D	125D	165D
Nenngröße	Maximales Fördervolumen		cm ³ /U	55	75,9	105	135,7	165,6	210,1	281,9	210	250	331,2
Drehzahl	Max. Betriebsdr ohne Tankvorspannu		U/min	2700	2500	2350	2300	2200	2100	2000	2450	2400	2100
Volumenstrom**	Max. Ölstrom		I/min	148,5	189,8	246,8	312,1	364,3	441,2	563,8	514,5	600,0	695,5
	Nenndruck		bar	420	420	420	420	420	420	420	420	380	420
Druck	Maximaldruck**	*	bar	500	500	500	500	500	500	500	500	420	500
	Zul. Gehäuseinn	endruck	bar			,	,	2	,5	,	,	'	
Antriebsmoment**	Max. Antriebsdr bei Nenndruck und N		Nm	368	507	702	907	1107	1404	1884	1245	1245	1964
Leistung**	Eckleistung (theoretisch) bei Nenndruck und maximaler Betriebsdrehzahl		kW	104,0	132,8	172,7	218,5	255,0	308,8	394,7	319,4	337	431,8
C+-11:+	V _{max} -> V _{min} Schwenken bei	HD 100 bar	ms	120	120	120	140	150	200	300	200	140	150
Stellzeit Werte gemessen mit E1L Regler (NG 280 mit	konstantem Hochdruck HD	HD 200 bar	ms	70	70	70	70	130	170	270	170	120	130
TL2)bei einer Viskosität von 20 cSt und einer Antriebsdrehzahl von	V _{min} -> V _{max} Schwenken aus	HD 100 bar	ms	180	180	180	180	180	180	430	160	180	180
1500 U/min	Stand-by-Druck und ohne Fördermenge auf Hochdruck HD	HD 200 bar	ms	160	160	160	160	160	160	350	160	160	160
Zul. Wellen-	Axial		N	2000									
belastung	Radial		N					auf Ar	nfrage				
Zul. Gehäuse- temperatur	Zul. Gehäuseten mit zulässiger Viskos	nperatur ität > 10 cSt	°C					9	0				
	HPR-02 ohne Öl	(ca.)	kg	39	39	50	65	89	116	165	96	113	177
Masse	Massenträgheits	smoment	kgm ² x 10 ⁻²	0,79	0,79	1,44	2,15	3,41	4,68	8,34	2,88	2,95	6,88

^{*)} Mit Tankvorspannung sind höhere Drehzahlen möglich siehe <<Saugdrehzahlen>>
**) Theoretische Werte der Einzeleinheit ohne Wirkungsgradeinflüsse
***) Höchster Druck, der kurzzeitig den maximalen Betriebsdruck übersteigen kann

Standard Linde-Typenschild


Jede Linde Hydraulics Einheit erhält ein Typenschild mit Angabe der Type und der Serialnummer. Bei einem Einzelauftrag kann eine kundenspezifische Nummer oder freier Text mit bis zu 15 Stellen auf das Standard Typenschild geprägt werden.

Туре	HPR 105-02	Regelpumpe der Baureihe 02, Nenngröße 105
	R	Drehrichtung rechts
	2683	letzte 4 Stellen der Materialvariante 2540002683
Serial-No.	H2X	
	254	Typnummer HPR 105-02
	Т	Buchstabe für Produktionsjahr
	12345	laufende Nummer
Part No.	12345678	freies Textfeld für bis zu 15 Stellen



Allgemeine technische Daten.

Auswahldiagramm

Saugdrehzahlen

Betriebsparameter. Empfehlungen zur Lebensdauer

Empfehlungen zur Lebensdauer

Linde Hochdruckeinheiten sind für hohe Zuverlässigkeit und lange Lebensdauer ausgelegt. Die tatsächliche Lebensdauer einer Hydraulikeinheit wird durch zahlreiche Faktoren bestimmt. Eine deutliche Verlängerung der Lebensdauer wird durch eine sachgemäße Wartung des Hydrauliksystems und ein hochwertiges Betriebsmedium erzielt.

Günstige Betriebsparameter für eine lange Lebensdauer

>> Drehzahl kleiner max. Betriebsdrehzahl
 >> Betriebsdruck kleiner 300 bar Δp im Durchschnitt
 >> Max. Druck nur bei reduziertem Schwenkwinkel

>> Leistung Dauerleistung oder geringer

>> Öl-Reinheit 18/16/13 nach ISO 4406 oder besser

Ungünstige Betriebsparameter für eine lange Lebensdauer

>> Drehzahl zwischen max. Betriebsdrehzahl und Höchstdrehzahl

>> Betriebsdruck größer 300 bar Δp im Durchschnitt

>> Viskosität kleiner 10 cSt

>> Leistung dauerhafter Betrieb nahe Eckleistung
>> Öl-Reinheit schlechter als 18/16/13 nach ISO 4406

Betriebsparameter. Tankanschluss, Filterung, Einbaulage

Tankanschluss

Das im Pumpenbetrieb prinzipbedingt anfallende Leckage- und Dekompressionsöl wird aus dem Triebwerk ins Pumpengehäuse entlassen. Über eine entsprechend dimensionierte Verrohrung des Gehäuseanschlusses zum Tank ist sicherzustellen, dass der zulässige Gehäusedruck nicht überschritten wird.

Filterung

Eine hohe Ölreinheit trägt deutlich zur Verlängerung der Lebensdauer des Hydrauliksystems bei. Um die Funktionstüchtigkeit der Hydropumpen und deren hohe Wirkungsgrade langfristig sicherzustellen, sollte die Reinheit des Betriebsmediums den folgenden Kriterien entsprechen.

>> Für hohe Funktionssicherheit und Lebensdauer

18/16/13 nach ISO 4406 oder besser

>> Mindestanforderung

20/18/15 nach ISO 4406

>> Anlieferung

Die Mindestanforderung an die Reinheit des Hydrauliköls orientiert sich am empfindlichsten Bauteil im System. Bei der Anlieferung wird eine Filterung empfohlen, so dass sich eine entsprechende Ölreinheit ergibt.

>> Befüllung und Betrieb von Hydrauliksystemen

Bei Befüllung bzw. Nachfüllung ist sicherzustellen, dass die erforderliche Reinheit des Hydrauliköls eingehalten wird. In der Regel erfordert dies bei Befüllung aus Fässern, Kanistern oder Großtanks eine Vorfilterung des Öls. Durch entsprechende Maßnahmen (z.B. Filter) wird empfohlen sicherzustellen, dass die geforderte Ölreinheit auch während des Betriebs eingehalten wird.

>> Internationale Normen

Codezahl nach ISO 4406 18/16/13 entspricht

20/18/15

Reinheitsklasse nach SAE AS 4059 8A/7B/7C 9A/8B/8C

Einbaulage

Die bevorzugte Einbaulage der Einheiten ist grundsätzlich horizontal. Pumpenausführungen für vertikalen Einbau mit nach oben gerichteter Welle besitzen einen zusätzlichen Entlüftungsanschluss "R" am Montageflansch. Diese sind in bestimmten Merkmalskombinationen verfügbar und gesondert anzufragen.

Nähere Informationen zur Installation entnehmen Sie bitte der Betriebsanleitung.

Betriebsparameter. Druckflüssigkeiten

Um die Funktionstüchtigkeit der Hydropumpen und deren hohe Wirkungsgrade sicherzustellen, sollte das Betriebsmedium hinsichtlich Viskosität und Reinheit den unterschiedlichen Anforderungen des Maschinenbetriebs entsprechen. Linde empfiehlt die ausschließliche Verwendung von Druckflüssigkeiten, deren Eignung für Hochdruck-Hydraulikanlagen vom Öl-Hersteller bestätigt werden können, bzw. die vom Maschinenhersteller freigegeben wurden.

Zulässige Druckflüssigkeiten

- >> Mineralöl HLP nach DIN 51 524-2
- >> biologisch abbaubare Öle nach ISO 15 380 auf Anfrage
- >> andere Druckmedien auf Anfrage

Linde bietet sowohl eine Durchführung des Öltests nach VDMA 24 570 als auch die erforderliche Apparatur zur eigenen Durchführung an. Preise auf Anfrage.

Empfehlung für Viskositätsbereiche

Druckflüssigkeitstemperaturbereich	[°C]	-20 bis +90
Betriebsviskositätsbereich	$[mm^2/s] = [cSt]$	10 bis 80
optimaler Betriebsviskositätsbereich	$[mm^2/s] = [cSt]$	15 bis 30
Höchstviskosität (kurzzeitig beim Anfahren)	$[mm^2/s] = [cSt]$	1000

Für die richtige Wahl der Druckflüssigkeit wird die Kenntnis der Betriebsparameter im Kreislauf vorausgesetzt. Die Auswahl der Druckflüssigkeit soll so erfolgen, dass im Betriebstemperaturbereich die Betriebsviskosität im optimalen Bereich liegt (siehe Tabellen).

An keiner Stelle der Anlage sollte die Temperatur höher als 90°C sein. Die Lecköltemperatur wird von Druck und Drehzahl beeinflusst und liegt stets über der Kreislauftemperatur. Sind für spezielle Einsatzfälle die angegebenen Bedingungen nicht einzuhalten, empfehlen wir die Rückfrage.

Empfehlungen für Viskositätsklassen

mittlere Betriebstemperatur [°C]	Viskositätsklasse [mm²/s] = [cSt] bis 40 °C
ca. 30 bis 40	22
ca. 40 bis 60	32
ca. 60 bis 80	46 oder 68

Linde LSC-System.

Das Linde Synchron Control (LSC) - System für den offenen Hydraulikkreis ermöglicht eine an den Verbraucherbedarfsströmen orientierte Volumenregelung der Pumpe, die auf der Load Sensing-Technologie (LS-Technologie) basiert. Bei einem LSC-System wird die Wirkung von wechselnden Lasten, einer wechselnden Anzahl von Verbrauchern sowie unterschiedlicher Lastniveaus an verschiedenen Verbrauchern kompensiert. Dies geschieht automatisch, wodurch der Maschinenbediener entlastet wird, da ein ständiges Nachsteuern wie bei anderen Systemen entfällt. Mit dem LSC-System lassen sich hocheffiziente und streng an der Maschinenfunktion orientierte Hydrauliksysteme realisieren. Bei der individuellen Maschinenauslegung unterstützen Sie unsere Anwendungsspezialisten gerne.

Funktionalität

- >> bedarfsorientierte Pumpenregelung
- >> hervorragendes Feinsteuerverhalten ohne Nachregeln
- >> exakte Reproduzierbarkeit von Maschinenbewegungen durch exaktes Ansteuern der Verbraucher
- >> dynamisches Ansprechverhalten
- >> lastunabhängige, simultane Bewegung mehrerer Verbraucher
- >> soziale Ölverteilung auch bei Überlast
- >> automatische Entlüftung der Wegeventilkappen
- >> optimale Bewegungskontinuität auch bei kombinierten Bewegungen

Weitere optionale Funktionen wie

- >> Prioritätsschaltung einzelner Verbraucher
- >> Leistungsregelung
- >> Hochdruckabsicherung
- >> Regenerationsfunktion
- >> Fahrenschaltung
- >> Lasthalte-Funktion
- >> Druckhochschaltung

Maschinenausstattung

- >> maßgeschneidertes System-Design für optimale Umsetzung der Kundenanforderungen
- >> optimale Nutzung der installierten Leistung bei gleichzeitiger Verbesserung der Energiebilanz
- >> hohe Flexibilität durch Steuerplatten im Baukastensystem
- >> kompakte, integrierte Lösungen
- >> modularer Aufbau von Ventilsektionen
- >> Zylinderanbauventile für direkte und schnelle Verbraucherversorgung, keine zusätzliche Rohrbruchsicherung erforderlich
- >> optimierte Verschlauchung

Vorteile

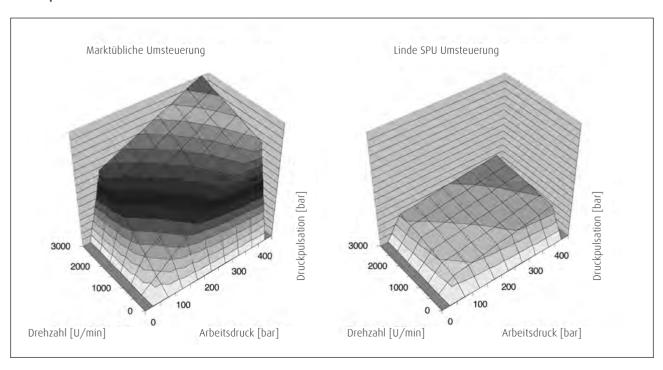
- >> perfekte Abstimmung der einzelnen Arbeitsfunktionen für eine kundenspezifische Fahrzeugcharakteristik
- >> effiziente und dynamische Maschinensteuerung für kurze Arbeitszyklen
- >> optimierte Energiebilanz für Kraftstoffeinsparung und erhöhte Umschlagleistung
- >> leichte und sichere Maschinen-Bedienbarkeit für ermüdungsfreies und effizientes Arbeiten
- >> unübertroffene Zuverlässigkeit unter härtesten Einsatzbedingungen
- >> verkürzte Montagezeiten

Geräuschreduzierung. SPU Speicherumsteuerung

In Hydrauliksystemen können Geräuschemissionen auf Grund von Druckpulsationen entstehen. Diese Druckpulsationen resultieren aus der prinzipbedingten ungleichförmigen Volumenstromförderung von Rotationskolbenpumpen. Im offenen Hydraulikkreis entstehen diese hauptsächlich innerhalb der Hydraulikpumpe während des Umsteuervorgangs, d.h. wenn ein Kolben von der Niederdruckseite (Saugseite) kommend in die Hochdruckseite eintaucht und dort schlagartig mit Hochdruck beaufschlagt wird. Je höher die Pumpendrehzahl ist und je größer die Druckdifferenz zwischen Niederdruck- und Hochdruckseite ist, desto mehr Pulsationsenergie wird über die Druckflüssigkeit in das Hydrauliksystem eingebracht. Druckpulsationen können Komponenten des Hydrauliksystems selbst oder der Maschine zum Schwingen anregen, wodurch die für das menschliche Ohr wahrnehmbare Geräuschemission entsteht.

Grundsätzlich bestehen für Maschinen mit Hydrauliksystemen folgende Möglichkeiten zur Geräuschreduzierung:

- >> Absenkung von Betriebsdruck und -drehzahl; dies reduziert die ins Hydrauliksystem eingebrachte Pulsationsenergie
- >> Primärmaßnahmen zur Optimierung des Umsteuervorgangs bei Rotationskolbenmaschinen zur Pulsationsreduzierung
- >> Sekundärmaßnahmen wie die schwingungsoptimierte Auslegung und Installation von Maschinenkomponenten und Geräuschdämmung zur Geräuschunterdrückung


Geräuschentstehung

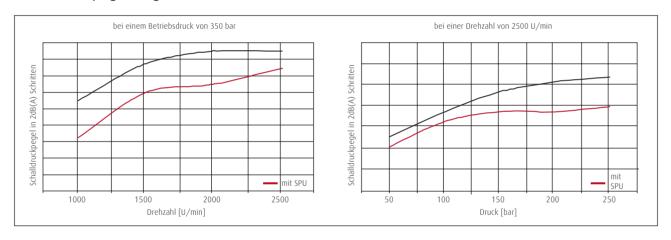
Geräuschreduzierung. SPU Speicherumsteuerung

Alle Linde Hydraulikpumpen sind hinsichtlich ihrer Pulsationseigenschaften und damit der Geräuschentstehung optimiert. Zusätzlich zu gängigen Primärmaßnahmen wie die ausschließliche Verwendung von pulsationsoptimierten Steuerböden bietet Linde Hydraulics für die Offenkreispumpen HPR-02 die Speicherumsteuerung SPU an. Diese reduziert ohne Einfluss auf Funktionalität und Leistungsfähigkeit der Pumpe die Druckpulsationen um bis zu 70% und das unabhängig vom Druck, Drehzahl und Temperatur. Die SPU ist über den gesamten Betriebsbereich adaptiv, Einstellung und Wartung sind nicht erforderlich.

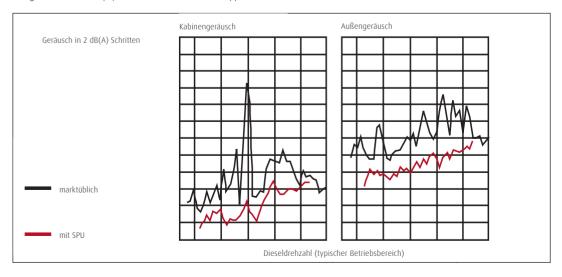
Druckpulsation mit und ohne SPU

Geräuschreduzierung. SPU Speicherumsteuerung

Funktion SPU Speicherumsteuerung

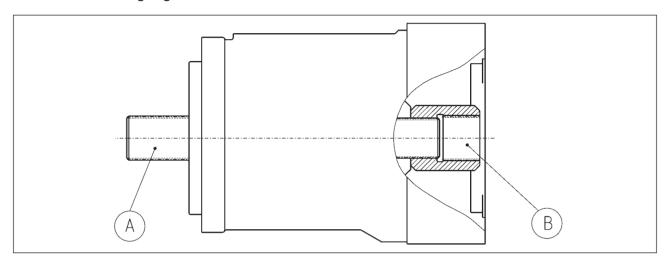

- >> Reduzierung der Druckpulsationen über den gesamten Betriebsbereich
- >> Reduzierung der Volumenstromschwankungen
- >> Geräuschreduktion um etwa die Hälfte (entspricht ca. 3 dB(A))
- >> ohne Beeinträchtigung des Wirkungsgrads
- >> sofort einsatzbereit, ohne Wartung
- >> einfacher und robuster Aufbau
- >> geringe Gewichts- und Bauraumzunahme

HPR-02 mit SPU


Die folgenden Darstellungen zeigen die unmittelbare Auswirkung eines mittels SPU gesenkten Pulsationsniveaus auf den Schalldruckpegel und somit auf die wahrgenommene Geräuschemission.

Schalldruckpegelvergleich einer HPR 75-02 mit und ohne SPU

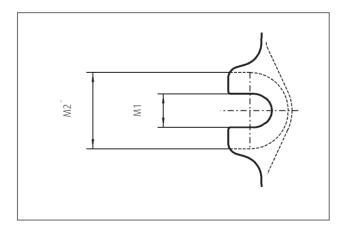
Vergleich resultierender Geräuschemissionen


Dargestellt in 2dB(A) Schritten über einen typischen Diesel-Betriebsbereich

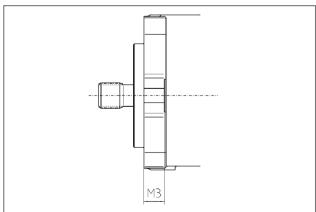
Momentenübertragung.

Abhängig von den gewählten Komponenten ist eine Übertragung unterschiedlicher Drehmomente möglich. Es ist zu beachten, dass die Kraftübertragungskomponenten wie z.B. Antriebsflansch, PTO-Durchtrieb und Zusatzpumpen entsprechend ausgelegt werden. Unsere Vertriebsingenieure unterstützen Sie gerne bei der Auslegung.

Momentenübertragung an HPR-02


Das Bild Momentenübertragung an HPR-02 zeigt die Antriebsseite (A) und PTO-/Abtriebsseite (B) einer Pumpe. Die Informationen der folgenden Seiten beziehen sich darauf mit

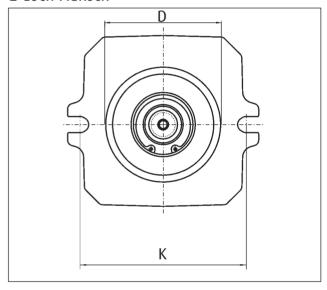
- >> Anbauflansch und Antriebswelle (A)
- >> PTO-Flansch und Abtriebswelle (B).


A) Flanschverschraubung

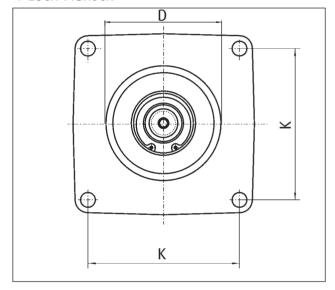
			Nenngröße HPR-02									
Schraubloch		55	75	105	135	165	210	105 D	280	165 D		
M1 Innendurchmesser	mm	17,5	17,5	17,5	21,5	21,5	22	17,5	22	17,5		
M2 Außendurchmesser	mm	34	34	40	40	40	-	40	-	-		
M3 Klemmlänge	mm	20	20	20	20	25	26	20	30	25		

Durchmesser Schraubloch

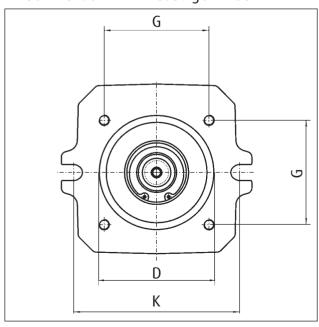
Klemmlänge Flansch

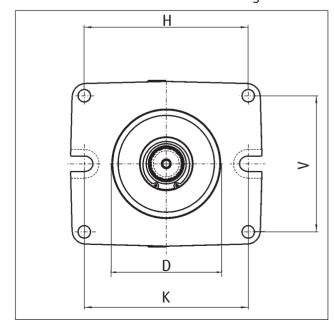


Momentenübertragung. Anbauflansch


			Befesti	gung	Abmaße					
Flanschanschlussmaß nach SAE J744	Für Nenngröße	Unterleg- scheibe	Schraube	Anzugs- moment (8.8) [Nm]	Anzugs- moment (10.9)* [Nm]	K [mm]	D [mm]	H [mm]	V [mm]	G [mm]
SAE C, 2 Loch	55, 75, 105	17x33x10	M16	195	275	181,0	127	-	-	-
SAE C, 2 Loch mit 4 Zusatzgewinden M12	105	17x33x10	M16	195	275	181,0	127	-	-	114
SAE C, 2 Loch mit 4 Zusatzbohrungen (d=10,5 mm)	105D	17x33x10	M16	195	275	181,0	127	178	178	-
SAE D, 2 Loch	135	21x37x8	M20	385	540	228,6	152,4	-	-	-
SAE D, 2 Loch mit 4 Zusatzgewinden M16	135	21x37x8	M20	385	540	228,6	152,4	-	-	138
SAE D 2 Loch mit Zusatzbohrungen (d=17,5 mm)	165 & 165D	21x37x8	M20	385	540	228,6	152,4	230	190	-
SAE E, 4 Loch	210 & 280	-	M20	385	540	224,5	165,1	-	-	-

^{*)} Option bei Standardausführung, notwendig bei Tandemeinheiten

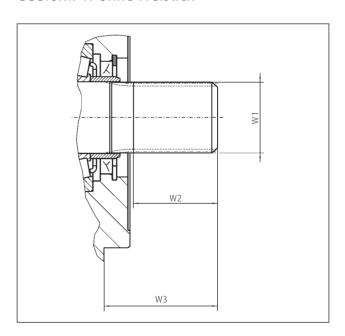

2-Loch Flansch


4-Loch Flansch

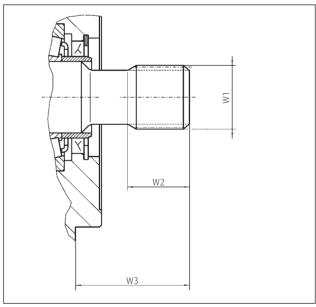
2-Loch Flansch mit 4 Zusatzgewinden

2-Loch Flansch mit 4 Zusatzbohrungen

Momentenübertragung. Antriebswelle


A) Maße Antriebswellen

Wellen-	SAE-J744 Kurzzeichen	Außen- durchmesser	nutzbare Verzahnungs-	Wellen-			vei	rfügbar	für No	enngrä	iße		
verzahnung (nach ANSI B92.1)	(für Zentrierung und Welle)	W1 [mm]	länge WŹ [mm]	bauform	55	75	105	105D	135	165	165D	210	280
12/24, 14 Z	C	31,22	30	2	Χ	Х	Х	-	-	-	-	-	-
16/32, 21 Z		34,51	39,5	1	-	Χ*	-	-	-	-	-	-	-
12/24, 17 Z	C-C	37,68	30	2	-	-	Х	Х	Χ	-	-	-	-
16/32, 23 Z		37,68	38,5	1	-	-	Χ*	Х	-	-	-	-	-
8/16, 13 Z	D, E	43,71	50	2	-	-	-	-	Χ	Х	Х	-	-
16/32, 27 Z		44,05	62	1	-	-	-	-	Χ	Χ*	Х	Х	-
8/16, 15 Z	F	50,06	58	1	-	-	-	-	-	-	-	Χ*	Х


^{*)} Für Tandemeinheiten empfohlene Welle

A) Wellenbauformen bei Linde Hydraulics

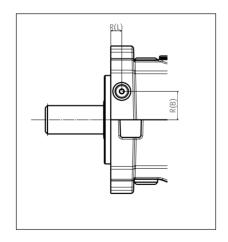
Bauform 1. Ohne Freistich

Bauform 2. Mit Freistich

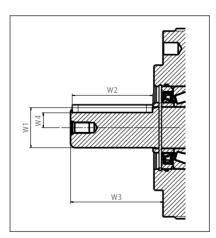
Nenngröße		55	75	105	105D	135	165	165D	210	280
Wellenüberstand W3	mm	54	55	55	61,3	75	75	75	75	75

Momentenübertragung. Einheiten nach ISO 3019-2 und SAE J617a

Die vorgenannten Informationen und Maße beziehen sich auf Einheiten nach ISO 3019-1 (SAE-J-744). Daneben stehen ausgewählte Konfigurationen auch nach ISO 3019-2 zur Verfügung. Diese besitzen standardmäßig einen zusätzlichen Entlüftungsanschluss "R" im Montageflansch zum senkrechten Einbau und eine Welle mit Passfeder.


Nenngröße		105	280
Flansch		125A2SW	224B4SW
Befestigung		2-Loch	4-Loch
Schraublochdurchmesser	M1	17,5	22
Schraubenauflagefläche	M2	40	40
Klemmlänge	M3	30	30
Zentrierung	D	125	224
Befestigungslochabstand	K	180	198
Wellendurchmesser	W1	40	60
Passfeder nach DIN 6885	W2	12x8x80	18x11x100
Wellenüberstandsmaß	W3	92	115
Aufsatzhöhe	W4	23	53
Anschluss R	Größe	M14x1,	5 13 tief
	Position	Unterseite, wie Anschluss "T"	seitlich, wie Anschluss "U"
R(L)		15,5	15
	R(H)	са. 80	50
	R(B)	40	152

>> weitere Abmaße und Lage der übrigen Anschlüsse, siehe << Maße. Einzelpumpen HPR-02 für TL2, LEP, ETP>>


Ansicht Flansch

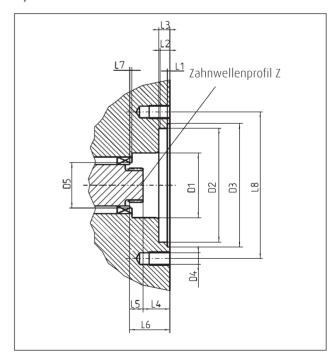
K D D (±) W

Ansicht auf R

Welle im Detail

Linde HPR Pumpen können ab Werk passend für die Montage an einem Flansch nach SAE J617a ausgeliefert werden. Dazu wird die Pumpe mit einem Adapter versehen. Je nach Nenngröße ist die Basiseinheit eine reguläre HPR-02 oder eine Einschubvariante. Darstellungen der Einschubvariante siehe <<Maße. Doppelpumpen und Einschubeinheiten>>.

Standard nach SAE J617a	Nenngröße	Basiseinheit
SAE 3	105, 105D, 135	Einschubgehäuse
SAE 3	165, 165D	SAE D 2-Loch mit 4 Zusatzbohrungen
SAE 4	105, 105D, 135	Einschubgehäuse
SAE 5	55, 75, 105	SAE C 2-Loch


Momentenübertragung. PTO-Durchtrieb

Linde Pumpen können durch einen Anbau zu Tandem- und Mehrfachpumpen kombiniert werden. Die Kombinationsmöglichkeit wird durch die mögliche Drehmomentübertragung bestimmt. Die folgenden Angaben beziehen sich auf den PTO (Pumpenabtriebsseite ohne weiteren Anbau).

B) Maße PTO

Nenngröße		55	75	105	135	165	210	280
Z Wellenverzahnung (nach ANSI B92.1)		16/32, 18 Z	16/32, 18 Z	16/32, 19 Z	16/32, 21 Z	16/32 23 Z	16/32, 24 Z	16/32 27 Z
D1	mm	47	47	48	54	55	63	72
D2 Passungsdurchmesser	mm				82,55			
D3	mm				89,5			
D4		M 10						
D5 max. Lagerfreigang	mm	30	35	38	43	42	46	51
L1	mm		1	,5		1,9	1,9	1,9
L2 Passungslänge	mm			7		8	8	8
L3	mm				9			
L4 Mindestmaß	mm	35	39	33	32	57,8	46	47,5
L5 nutzbare Verzahnungslänge	mm	18	18	24	15,8	24,4	29,5	39
L6 Lageranschlag	mm	48	48	52,7	54,2	83,3	46	86
L7 min. Lagerfreigang	mm	3 5					5	0,7
L8 Lochabstand 2-Loch	mm		106,4					

B) Maße PTO

Momentenübertragung. PTO-Anbaumöglichkeiten und Abtriebswelle

Neben der Kombination mit weiteren HPR und HPV Pumpen zu Mehrfach- und Tandemeinheiten (siehe << Maße. Mehrfachpumpen>>) können Linde HPR Pumpen ab Werk für die Kombination mit anderen Pumpen vorbereitet werden. Zu diesem Zweck werden je nach Pumpennenngröße unterschiedliche Zentrierungen für die nachfolgende Pumpe angeboten. Eine passende Kupplungsmuffe für die Triebwelle kann ebenfalls ausgewählt werden. Derzeit stehen folgende Kombinationsmöglichkeiten zur Verfügung. Zu den Drehmomentangaben siehe auch die Anmerkungen zur Tabelle unter << Allgemeine technische Daten>>.

B) PTO-Anbaumöglichkeiten

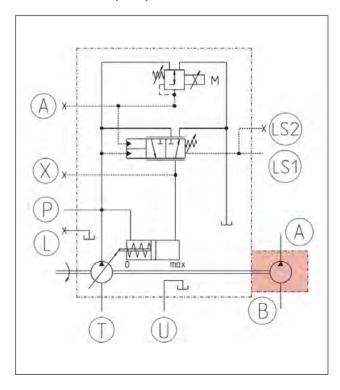
Zentrierung	Kupplungsmuffe		Nenngröße								
Kurzzeichen nach SAE J 744	nach ANSI B92.1	55	75	105	135	165	210	280			
Linde Zahnradpı	umpen Direktanbau	X	X	Х	Х	X	X	Х			
А	ohne	Х	X	Х	Х	X	X	Х			
А	16/32 9 Z (A)	X	X	Х	Х	X	X	-			
А	16/32 11 Z	-	-	-	-	-	X	-			
А	16/32 13 Z	-	-	X	Х	-	X	Х			
В	ohne	X	X	X	Х	X	X	Х			
В	16/32 13 Z (B)	X	X	X	Х	X	X	X			
В	16/32 15 Z (B-B)	X	X	X	X	-	-	X			
С	ohne	X	X	X	X	X	X	X			
С	12/24 14 Z (C)	X	X	X	X	X	X	X			
С	16/32 21 Z	-	X	X	Х	-	X	-			
С	16/32 23 Z	-	-	X	Х	X	X	-			
D	ohne	-	-	-	Х	X	X	X			
D	8/16 13 Z (D)	-	-	-	Х	-	-	-			
D	12/24 17 Z	-	-	-	X	-	-	-			
D	16/32 27 Z	-	-	-	Х	X	X	-			
E	ohne	-	-	-	-	-	X	X			
E	16/32 27 Z	-	-	-	-	-	X	-			

B) Drehmoment Abtriebswelle

Nenngröße		55	75	105	135	165	210	280
Dauer-Drehmoment	Nm	219	302	418	540	659	836	1122
Maximales Drehmoment	Nm	433	598	763	1069	1069	1655	2221

Zahnradpumpen.

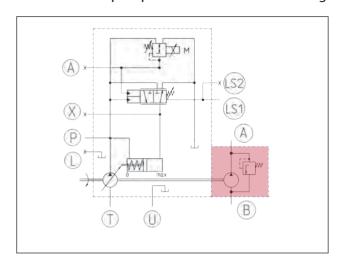
Die Zahnradpumpen sind in zwei Bauarten verfügbar: Innenzahnradpumpen (IZP) und Außenzahnradpumpen (AZP). Beide Bauarten können für den Steuer- und Kühlkreislauf eingesetzt werden. Die Ansaugung kann bei beiden Typen in Verbindung mit einer Regelpumpe HPR-02 nur extern erfolgen. Der interne Anschluss der IZP ist verschlossen.


Innenzahnradpumpen verfügen über ein Kaltstartventil und einen PTO für den Anbau weiterer Pumpen. Die möglichen Kombinationen von und mit IZP und AZP werden durch die PTO-Option und das zulässige Wellendrehmoment bestimmt.

Übersicht Zahnradpumpen

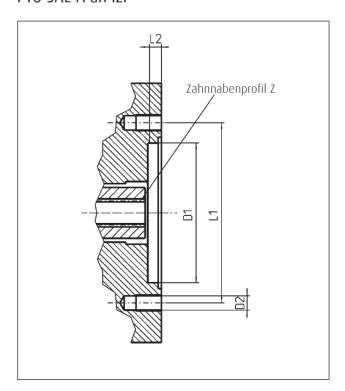
Fördervolumen	cm³/U	16	19	22,5	31	38	44
Zahnradpumpentyp		IZP	AZP	IZP	AZP	AZP	AZP
Anschlussbild und Wellenverzahnung		SAE A 16/32, 18 Z	SAE A 16/32 9 Z	SAE A 16/32, 18 Z	SAE A 16/32, 9 Z	SAE A 16/32, 13 Z	SAE A 16/32, 13 Z
Ansaugung in Verbindung mit HPR-02		extern					
Max. zulässiger Betriebsdruck zul. Filter- und Kühler-Nenndruck beachten	bar	40	210	40	165	275	220
Zulaufdruck minimum	bar	0,8 (absolut)					
Zulaufdruck maximum	bar	3,0 (absolut)					
Kaltstartventil		integriert	-	integriert	-	-	-

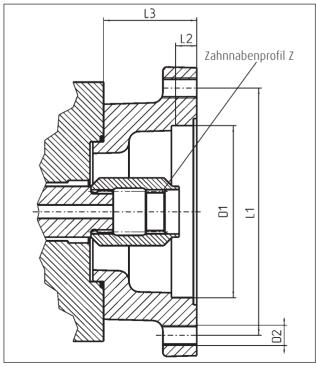
- >> Anschlussbezeichnung Rechtslauf: A Druckanschluss, B Sauganschluss (dargestellt)
- >> Anschlussbezeichnung Linkslauf: A Sauganschluss, B Druckanschluss (nicht dargestellt)
- >> Anschlüsse nach ISO 6149-1
- >> Alternativ DIN 3852-1
- >> Sauganschluss der IZP nach ISO 8434-1 L28


Außenzahnradpumpe AZP

Zahnradpumpen.

Innenzahnradpumpe IZP mit externer Ansaugung




PTO-Flansch an IZP

Flanschprofil 2-Loch		SAE A	SAE B	SAE B-B	SAE C		
Z Zahnnabenprofil nach ANSI B92.1		16/32, 9 Z	16/32, 13 Z	16/32, 15 Z	12/24, 14 Z		
D1 Passungsdurchmesser	mm	82,55	101,6		101,6		127
D2 Gewindedurchmesser	mm	M 10	M 12		M 16		
L1 Lochabstand	mm	106,4	146		181		
L2 Passungslänge	mm	7	11 1		13		
L3 Flanschlänge	mm	-	55 72		72		
Übertragbares Dauer-Drehmoment	Nm	75	175				
Max. übertragbares Drehmoment	Nm	107	250				

PTO SAE A an IZP

PTO SAE B, B-B und C an IZP

Regler.

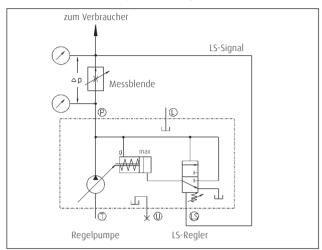
Mit dem modular konzipierten Reglerbaukasten können die verschiedensten funktionalen Systemanforderungen erfüllt werden. Bei allen Reglerausführungen sind sämtliche Reglerfunktionen in einem Gehäuse integriert, um eine direkte Signalübertragung ohne Verzögerungen und ein Maximum an Kompaktheit sicherzustellen. Alle Regler, die mit einer Load Sensing-Funktion ausgestattet sind, sind voll kompatibel zum Linde Synchron Control-System, siehe << Linde LSC-System>>.

Funktionsübersicht

Regelprinzip	Zusatzfunktion	Rückmeldung der Wiegenposition	Name
	mit Druckabschneidung	ohne	LP
Load Sensing	mit Übersteuerung der ∆pLS Einstellung	ohne	E1L/H1L
	mit hyperbolischer Leistungsbegrenzung	mit	TL2
	elektro-proportionale Hubvolumenbegrenzung und Druckabschneidung	mit	LEP
Steuerung	elektro-proportionale Volumenverstellung, Leistungsbegrenzung u. Druckabschneidung	mit	ETP

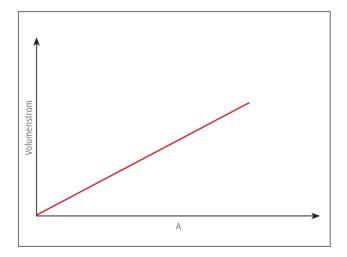
Regler ohne Rückmeldung der Wiegenposition. Montage auf der Steuerbodenaufnahme

Regler mit Rückmeldung der Wiegenposition. Montage auf dem Pumpengehäuse


Regler. LS. Load Sensing

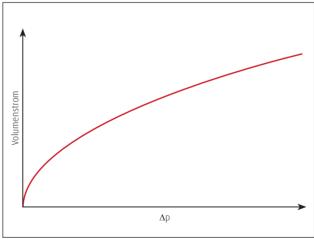
Linde Pumpen mit Load Sensing-Regelung ermöglichen es, die gewünschte Geschwindigkeit für die Bewegung z.B. des Auslegers über die Öffnung des Ventils vorzugeben. Am Load Sensing-Regler der Hydraulikpumpe erfolgt ein ständiger Abgleich zwischen gemessenem Pumpendruck und Lastdruck.

Load Sensing. Eine Bedarfsstromregelung


Regelpumpe mit LS-Regler und Messblende (im Ventil)

Am Regler wird ein nach Kundenwünschen definiertes Druckgefälle eingestellt. Der Volumenstrom wird durch Öffnung A des Steuerventils und des wirksamen Druckgefälles definiert. Der LS-Regler sorgt dafür, dass das Δp immer dem eingestellten Wert entspricht. Verändert sich der Volumenstrom-Bedarf, wird die Pumpe entsprechend nachgeregelt. Dies geschieht automatisch und entlastet den Fahrer. Denn auch wechselnde Lasten und eine sich ändernde Anzahl der angesteuerten Verbraucher werden automatisch kompensiert. Die Δp LS Grundeinstellung ist möglich von 16 bis 27 bar mit 20 bar als Standard.

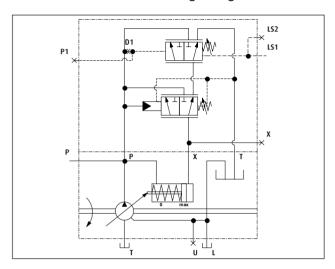
(Der LS-Differenzdruck beeinflusst die Reaktionszeit des Pumpensystems)


LS-Funktion bei Δp = konstant

Vorteile der LS-Regelung

- >> jeder Volumenstrom innerhalb des maximalen Volumenstroms der Pumpe ist ansteuerbar
- >> Reaktionsgeschwindigkeit der Maschine definierbar
- >> OEM-spezifisches Maschinenverhalten möglich
- >> optimale Feinsteuerbarkeit

LS-Funktion bei Querschnitt A = konstant

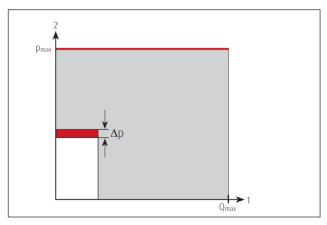

Vorteile durch die bedarfsorientierte Pumpenregelung

- >> lastunabhängige Maschinensteuerung
- >> geringe Wärmeentwicklung
- >> erhöhte Pumpenlebensdauer
- >> niedrige Geräuschentwicklung im Gesamtsystem
- >> weniger Komponenten für den Regelmechanisums
- >> geringe Energieaufnahme, besonders bei Teil-Volumenstrom

Regler. LP. Load Sensing mit Maximaldruckregelung

Der LP-Regler bietet neben der Load Sensing-Funktion eine Maximaldruckregelung. Erreicht der Systemdruck den am Maximaldruckregler eingestellten Regeldruck, wird der LS-Regler übersteuert und die Pumpe schwenkt zurück, wobei der im System bestehende Regeldruck aufrecht erhalten bleibt. Die Hydraulikpumpe bleibt solange zurückgeschwenkt, bis der Systemdruck den Regeldruck unterschreitet und die Hydraulikpumpe wieder im normalen LS-Betrieb ist.

LP. LS mit Maximaldruckregelung



Der Maximaldruckregler verhindert ein längeres Ansprechen der im Hydrauliksystem zur Absicherung vorhandenen Druckbegrenzungsventile. Daraus ergeben sich für das Hydrauliksystem folgende Vorteile:

- >> Aufrechterhalten des Betriebsdrucks
- >> kein Betrieb im Überlastbereich
- >> jeder Betriebspunkt unterhalb der Leistungskurve bleibt ansteuerbar
- >> bedarfsorientierte Förderstromgenerierung

- >> geringe Leistungsverluste
- >> reduzierte Wärme- und Geräuschentwicklung
- >> längere Lebensdauer der Pumpe und des gesamten Hydrauliksystems
- >> verbesserte Energiebilanz des Gesamtsystems

LP-Kennlinie

- 1 Volumenstrom
- 2 Druck
- Maximaler Leistungsbereich der Pumpe
- ☐ Momentaner Leistungsbedarf des Systems
- Regel ∆p
- Kennlinie Druckabschneider

LP-Regler

Mögliche Einstellbereiche für die Maximaldruckregelung

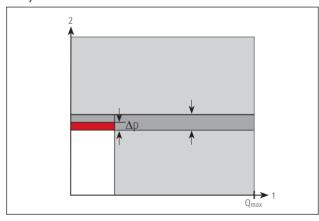
- >> 125 230 bar
- >> 231 350 bar
- >> 351 420 bar

Regler. E1L/H1L. Load Sensing mit Übersteuerung

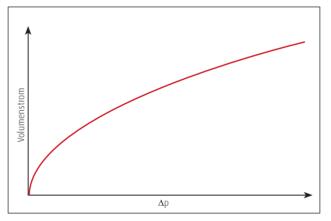
Die HPR-02 mit H1L oder E1L Regler bieten neben der Load Sensing-Funktion eine hydraulische, bzw. elektrische Übersteuerung des Δp LS-Signals. Hierdurch kann beispielsweise eine so genannte Mode-Steuerung zur Betriebsartenwahl oder eine Grenzlastregelung (Drückungsregelung) dargestellt werden. Die Integration aller Funktionen in den Pumpenregler ermöglicht eine direkte Signalübertragung ohne Verzögerungen. Die reglerspezifischen Angaben sind unabhängig von der Pumpennenngröße.

Anwendungen der LS-Übersteuerung

>> Mode-Steuerung

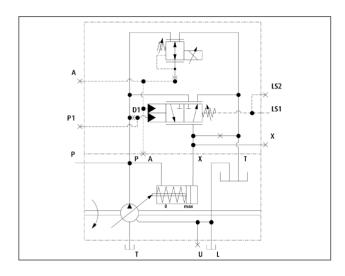

Mit der Mode-Steuerung (Betriebsarten-Wahl) wird das an einer Messblende (z.B. Wegeventilschieber) abfallende Δp LS-Signal elektrisch oder hydraulisch moduliert und so der aktuelle Δp LS-Wert proportional reduziert. Dadurch wird letztlich die Fördermenge der Pumpe angepasst, siehe nachfolgende Diagramme. So kann mit gleicher Messblende ein reduzierter Volumenstrom der Pumpe erzeugt werden. Dies führt in Anwendungen mit Proportionalventilen zu einer erhöhten Auflösung im Feinsteuerbereich, was besonders präzise und feinfühlige Verbraucherbewegungen ermöglicht.

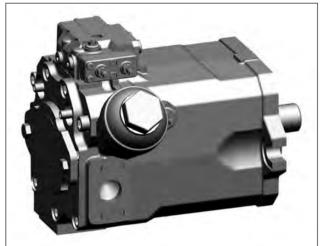
>> Grenzlastregelung


Im Zusammenwirken mit einer elektronischen Steuereinheit wird eine Drückung des Antriebmotors erfasst und über eine Modulation des Δp LS die Pumpenfördermenge so begrenzt, dass die maximale Antriebsleistung nicht überschritten wird. Damit steht die maximal verfügbare Antriebsmotorleistung unabhängig von Umgebungseinflüssen und der Anzahl der Verbraucher immer zur Verfügung.

Das am LS-Piloten wirksame Δp LS kann je nach Bedarf grundsätzlich bis Null moduliert werden, wobei im Arbeitsbereich nahe Null mit geänderten Reaktionszeiten des Pumpensystems zu rechnen ist.

E1L/H1L-Kennlinie

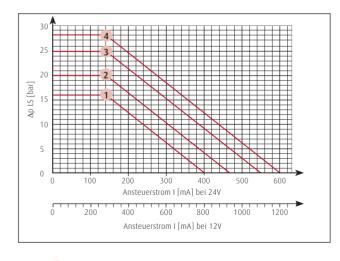

Pumpenvolumenstrom bei konstanter Messblende

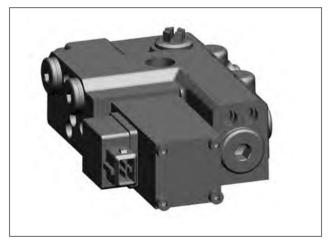


- 1 Volumenstrom
- 2 Druck
- Maximaler Leistungsbereich der Pumpe
- ☐ Momentaner Leistungsbedarf des Systems
- Mechanische ∆p Grundeinstellung
- \blacksquare Wirkendes, moduliertes Regel Δ p

Regler. E1L. Load Sensing mit elektrischer Übersteuerung

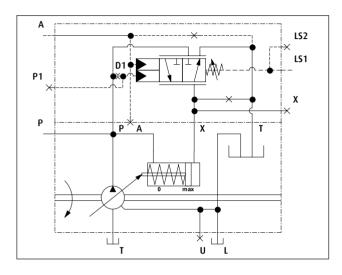
Die HPR-02 E1L bietet neben der Load Sensing-Funktion eine elektrische Übersteuerung für eine Mode-Aufschaltung zur Betriebsartenwahl, bzw. Grenzlastregelung (Drückungsregelung). Die Integration aller Funktionen in den Pumpenregler ermöglicht eine direkte Signalübertragung ohne Verzögerungen. Die reglerspezifischen Angaben sind unabhängig von der Pumpennenngröße.

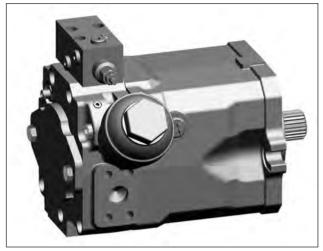



Bei einer elektrischen Übersteuerung des LS-Signals wird über den Proportionalmagneten ein Druckminderventil angesteuert. Der so erzeugte Steuerdruck wirkt der LS-Feder proportional entgegen, und die Wirkung des Δp LS-Signals wird entsprechend moduliert. Dadurch schwenkt die Pumpe zurück und reduziert somit ihre Fördermenge. Eine zusätzliche externe Ansteuerungsmöglichkeit der LS-Achse über den Anschluss "X1" bietet auch bei Unregelmäßigkeiten im Fahrzeugmanagement die von Linde gewohnte Verfügbarkeit der Pumpenregelung. Der Zusammenhang zwischen Steuerstrom "I" am Regelmagnet und dem dadurch erzeugten Δp LS ist im Diagramm dargestellt.

Über den Anschluss "A" des Reglers kann der vom Druckminderventil erzeugte Steuerdruck einem H1L Regler auf einer weiteren HPR Pumpe zugeführt werden, welche der ersten Pumpe mit E1L Regler nachfolgt (Master-Slave-Prinzip).

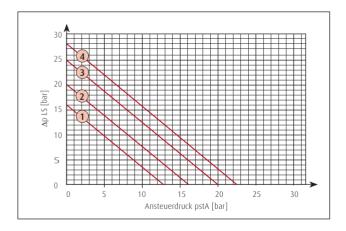
Δp LS-Kennlinie


E1L-Regler



- 1 16 bar ∆p Einstellung
- 2 20 bar Δp Einstellung
- 3 25 bar Δp Einstellung
- 4 28 bar Δp Einstellung

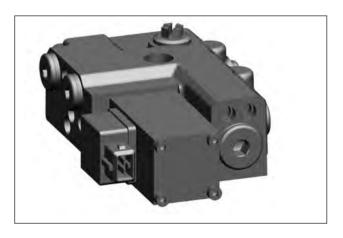
Regler. H1L. Load Sensing mit hydraulischer Übersteuerung


Die HPR-02 H1L bietet neben der Load Sensing-Funktion eine hydraulische Übersteuerung für eine Mode-Steuerung zur Betriebsartenwahl bzw. Grenzlastregelung (Drückungsregelung). Die Integration aller Funktionen in den Pumpenregler ermöglicht eine direkte Signalübertragung ohne Verzögerungen. Die reglerspezifischen Angaben sind unabhängig von der Pumpennenngröße. Der H1L Regler eignet sich insbesondere für Tandemkonfigurationen zweier HPR-Pumpen, bei der die erste mit einem E1L Regler bestückt ist. Die zweite Pumpe nutzt das resultierende hydraulische Signal des E1L Reglers der ersten Pumpe und folgt dieser dann nach (Master-Slave-Prinzip).

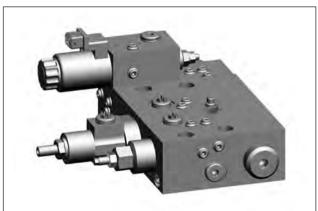
Bei einer hydraulischen Übersteuerung des LS-Signals wird über den Anschluss "A" am Regler ein Steuerdruck zugeführt. Dieser wirkt der LS-Feder proportional entgegen, und die Wirkung des Δp LS-Signals wird entsprechend moduliert. Dadurch schwenkt die Pumpe zurück und reduziert somit ihre Fördermenge. Der Zusammenhang zwischen Ansteuerdruck am Anschluss "A" und dem dadurch erzeugten Δp LS ist in dem folgenden Diagramm dargestellt.

Δp LS Kennlinie

H1L-Regler


- 1 16 bar Δp Einstellung
- 2 20 bar Δp Einstellung
- 3 25 bar Δp Einstellung
- 4 28 bar Δp Einstellung

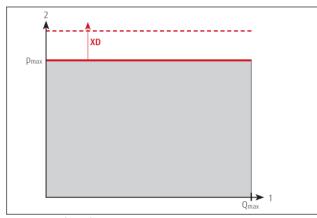
Regler. Elektrische Eigenschaften


Netzspannung = Dauergrenzspannung			12	24	
Ansteuerung Analog			100 Hz, Rechteck-Dither, Tastverhältnis variabel über Steuerbereich		
			Ditherüberlagerter Gleic nominell 35 Hz, Ta Weitere Detai	astverhältnis 1:1).	
Steckerart			DIN EN 175301-803, Deutsch, AMP Junior Timer (2-polig)		
Schutzart			IP54 (DIN), IP67 (Deutsch), IP6K6K (AMP)		
Spannungsart			Gleichspannung		
Leistungsaufnahme			15,6		
Nennstrom = Dauergrenzstrom			1200	600	
Relative Einschaltdauer			100		

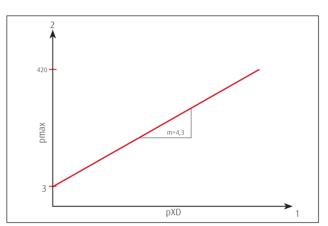
weitere Details auf Anfrage

Regler E1L mit Rechteckmagnet und AMP Stecker

Regler ETP mit Rundmagnet und AMP Stecker

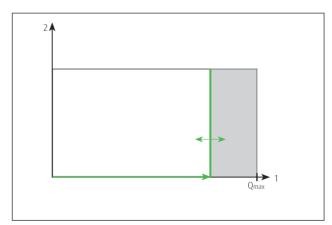


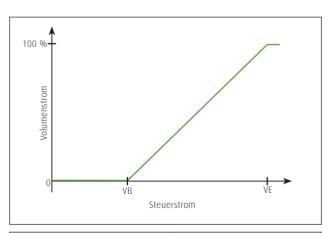
Regler. Regler mit Wegrückmeldung


Die HPR-Regler der Typen TL2, LEP und ETP besitzen eine Wegrückmeldung der Wiegenposition. Sie sind deshalb, im Gegensatz zu LP, E1L und H1L, nicht auf der Steuerbodenaufnahme, sondern auf dem Gehäuseteil der Pumpe montiert. Neben den individuellen Kennlinien besitzen diese Regler zum Teil gemeinsame Eigenschaften.

P-Achse (LEP/ETP): Kennlinienverschiebung Druckabschneider

Regler vom Typ LEP und ETP besitzen wie der LP-Regler einen Druckabschneider (DA). Dieser verhindert, dass der Druck der Pumpe einen zuvor eingestellten Maximalwert überschreitet. DA wird ab Werk auf einen kundenspezifischen Wert zwischen 125 bar und 420 bar eingestellt. Über ein Drucksignal am Anschluss "XD" kann bei LEP und ETP-Reglern der tatsächliche Ansprechdruck des DA Ventils jedoch stufenlos hochgesteuert werden. Pro bar am Anschluss "XD" wird der Ansprechdruck des Ventils um 4,3 bar erhöht. Der maximale Druck von 420 bar darf dabei nicht überschritten werden.


- 1 Fördervolumen
- 2 Druck
- Maximaler Leistungsbereich der Pumpe
- Grundeinstellung Druckabschneider
- -- Kennlinienverschiebung durch Steuerdrucksignal

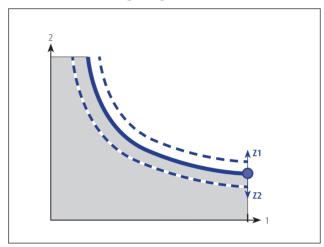

- 1 Steuerdruck am Anschluss "XD"
- 2 Ansprechdruck des Druckabschneiders
- 3 Grundeinstellung Druckabschneider

E-Achse (LEP/ETP): Elektrische Volumenstromvorgabe

Der Schwenkwinkel und damit das Fördervolumen wird der Pumpe bei Reglern vom Typ LEP und ETP über ein elektrisches Signal vorgegeben. Die genauen Stromwerte sind abhängig von der Spannungsebene der Anwendung und der Nenngröße der Pumpe. Ohne elektrisches Signal schwenkt die Pumpe auf minimales Fördervolumen.

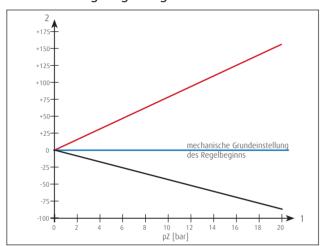
- 1 Fördervolumen
- 2 Druck
- Maximaler Leistungsbereich der Pumpe
- Elektrisch proportionale Volumenstromvorgabe
- Bereitgestellte Leistung

Nenngröße		Steuerstrom			
		12 V	24 V		
VB	105,135	464 mA	232 mA		
Verstellbeginn	210	490 mA	245 mA		
	280	524 mA	262 mA		
VE Verstellende	105 - 280	1200 mA	600 mA		


Regler. Regler mit Wegrückmeldung

T-Achse (TL2/ETP): Hydraulische Verschiebung des Regelbeginns

Regler der Typen TL2 und ETP besitzen eine Leistungsbegrenzung mit hyperbolischer Charakteristik. Ab Werk wird der Regler mechanisch auf eine bestimmte kundenspezifische Leistungsgrenze eingestellt. Beim Erreichen des Einstellwerts wird der Volumenstrom entsprechend begrenzt. Über Steuerdruckanschlüsse am Regler kann der Regelbeginn des Leistungsbegrenzers im Betrieb sowohl erhöht als auch reduziert werden.

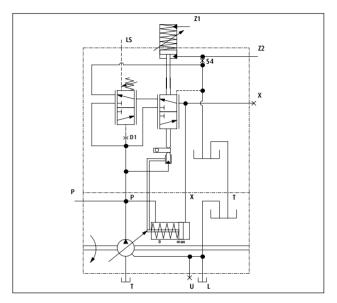

Ein nenngrößenabhängiger Mindestwert darf dabei weder bei der Grundeinstellung noch durch Verschiebung des Regelbeginns unterschritten werden. Der maximale Wert des Regelbeginns liegt bei 250 bar, unabhängig von Nenngröße und Betriebsdrehzahl. Keinesfalls darf die Einheit außerhalb Ihrer Eckleistung betrieben werden.

Kennlinie Leistungsbegrenzer

- 1 Volumenstrom
- 2 Druck
- Leistungsbereich der Pumpe
- Regelbeginn Leistungsbegrenzung

Verschiebung Regelbeginn

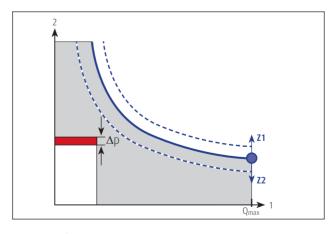
- 1 Steuerdruck am Anschluss Z1, bzw. Z2
- 2 Verschiebung des Regelbeginns [bar]
- Steuerdruck an Anschluss Z1
- Steuerdruck an Anschluss Z2


Eigenschaften Leistungsbegrenzer


	Nenngröße						
		75	105	135	210	280	
Einstellwert Leistungsbegrenzer [kW]		6 - 82	9 - 106	12 - 136	24 - 184	32 - 221	
Verschiebung des Regelbeginns	Z1	7,1	7,1	7,1	7,4	7,8	
[bar/bar]	Z2	-3,2	-3,2	-3,2	-3,3	-3,4	
Regelbeginn Minimum [bar]		60	60	60	80	80	
Regelbeginn Maximum [bar] (mechanisch eingestellt)		250					
max. Druck an Z1/Z2 [bar]		25					

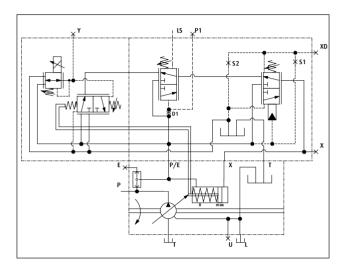
Regler. TL2. Load Sensing mit hyperbolischer Leistungsbegrenzung

Das Regelprinzip mit Leistungsbegrenzung dient der optimalen Leistungsnutzung des Antriebsmotors in Anwendungen, bei denen dem Hydrauliksystem nicht die volle Antriebsleistung zur Verfügung steht. Die HPR-02 TL2 bietet neben der Load Sensing-Funktion eine hyperbolische Leistungsbegrenzung. Bei Erreichen des Einstellwerts wird der Volumenstrom entsprechend begrenzt.


TL2. LS mit hyperbolischer Leistungsbegrenzung

Der TL2-Regler besitzt eine so genannte hydraulische Leistungsmode Funktion. Damit kann über separate Steuerdruckanschlüsse Z1/Z2 am Regler die Kennlinie des Leistungs-/Drehmomentbegrenzers abweichend von dessen mechanischer Voreinstellung verschoben werden. Wird eine Verschiebung des Regelbeginns nach unten, also eine Reduzierung der Pumpenleistung gewünscht, und damit der Anschluss Z2 genutzt, so wird S4 verschlossen. Wird die Mode Funktion gar nicht oder nur deren Z1 Anschluss genutzt, ist S4 mit einer Blende versehen. Z2 ist dann druckdicht verschlossen. Details siehe <<Regler mit Wegrückmeldung. T-Achse>>

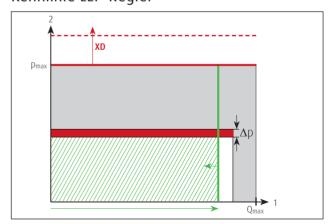
TL2-Kennlinie

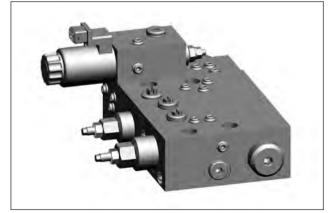

TL2-Regler

- 1 Volumenstrom
- 2 Druck
- Maximaler Leistungsbereich der Pumpe
- ☐ Momentaner Leistungsbedarf des Systems
- Regel ∆p
- Regelbeginn Leistungsbegrenzung
- Grundeinstellung Leistungsbegrenzung
- -- Kennlinienverschiebung durch Steuerdrucksignal

Regler. LEP. Load Sensing, elektrische Volumenstrombegrenzung und Druckabschneidung

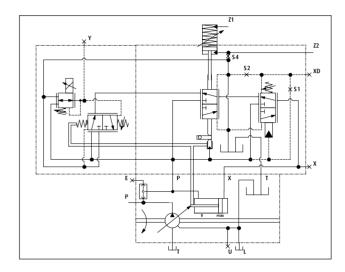
Die HPR mit LEP Regler besitzt eine bedarfsstromabhängige Load-Sensing Volumenstromregelung. Der tatsächlich zur Verfügung gestellte Volumenstrom kann in bestimmten Betriebspunkten über ein elektrisches Signal begrenzt werden. Ein Druckabschneider schützt das Hydrauliksystem vor Überlastung.




Ohne Signal am Elektromagneten oder am LS-Anschluss schwenkt die Pumpe auf Stand-by. Zum Ausschwenken der Pumpe sind beide Signale gleichzeitig notwendig. Der Schwenkwinkel der Pumpe wird durch das Signal mit der kleineren Vorgabe bestimmt.

Das Ansprechverhalten des Druckabschneiders kann optional über ein Hydrauliksignal am Anschluss "XD" fernverstellt werden. In diesem Fall ist S1 mit einer Blende ausgestattet und S2 verschlossen. Wird nur die mechanische Voreinstellung des Druckabschneiders genutzt, so ist S1 verschlossen und S2 nicht bestückt. Details siehe <<Regler mit Wegrückmeldung. P-Achse>>

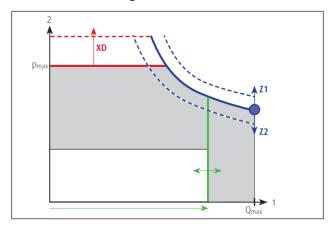
Kennlinie LEP-Regler

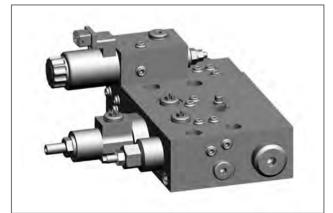

LEP Regler

- 1 Fördervolumen
- 2 Druck
- Maximaler Leistungsbereich der Pumpe
- ☐ Momentaner Leistungsbedarf des Systems
- Regel ∆p
- Bereitgestellte Leistung
- Grundeinstellung Druckabschneider
- -- Kennlinienverschiebung durch Steuerdrucksignal
- Elektrisch proportionale Volumenstrombegrenzung

Regler. ETP. Elektrische Volumenstromvorgabe, hyperbolische Leistungsbegrenzung und Druckabschneidung

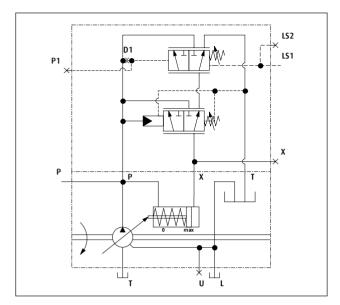
Die HPR mit ETP Regler stellt einen Volumenstrom bereit, der exakt proportional zum elektrischen Ansteuersignal ist. Dem überlagert besitzt der ETP-Regler eine hyperbolische Leistungsbegrenzung, welche die Leistung der Antriebsmaschine optimal ausnutzt und diese gleichzeitig vor Überlastung schützt. Zusätzlich schützt ein Druckabschneider das Hydrauliksystem. Die Versorgung des Reglers erfolgt über einen Einspeiseanschluss "E" in der Steuerbodenaufnahme.



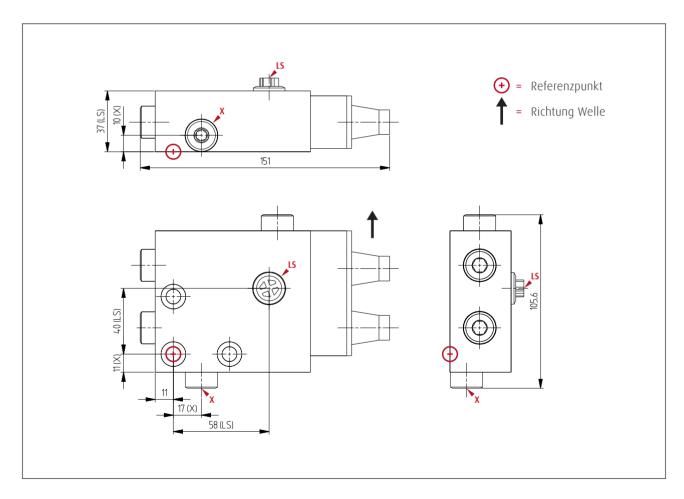

Der ETP-Regler besitzt eine so genannte hydraulische Leistungsmode Funktion. Damit kann über separate Steuerdruckanschlüsse Z1/Z2 am Regler die Kennlinie des Leistungsbegrenzers abweichend von dessen mechanischer Voreinstellung verschoben werden. Wird eine Verschiebung des Regelbeginns nach unten, also eine Reduzierung der Pumpenleistung gewünscht, und damit der Anschluss Z2 genutzt, so wird S4 verschlossen. Wird die Mode Funktion gar nicht oder nur deren Z1 Anschluss genutzt, ist S4 mit einer Blende versehen. Z2 ist dann druckdicht verschlossen. Details siehe <<Regler mit Wegrückmeldung. T-Achse>>

Das Ansprechverhalten des Druckabschneiders kann optional über ein Hydrauliksignal am Anschluss "XD" fernverstellt werden. In diesem Fall ist S1 mit einer Blende ausgestattet und S2 verschlossen. Wird nur die mechanische Voreinstellung des Druckabschneiders genutzt, so ist S1 verschlossen und S2 nicht bestückt. Details siehe <<Regler mit Wegrückmeldung. P-Achse>>

Kennlinie ETP-Regler

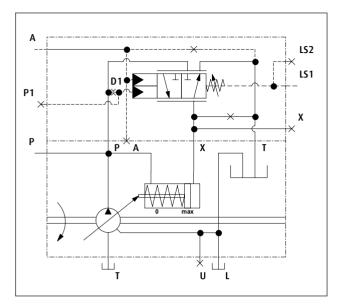


ETP Regler

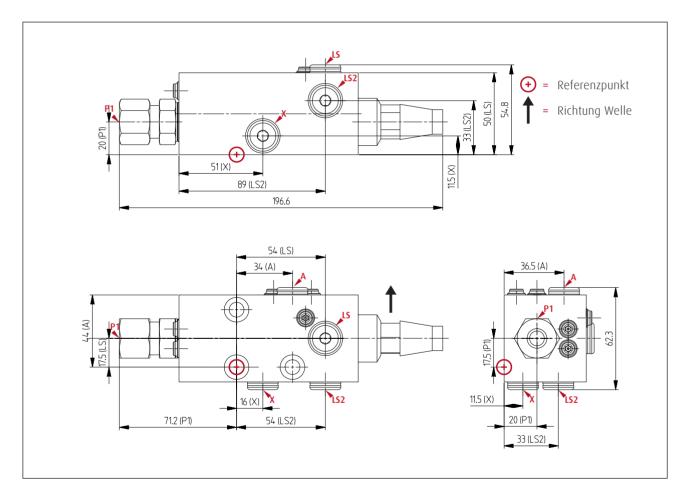


- 1 Fördervolumen
- 2 Druck
- Maximaler Leistungsbereich der Pumpe
- Elektrisch proportionale Volumenstromvorgabe
- ☐ Bereitgestellte Leistung
- Regelbeginn Leistungsbegrenzung
- Grundeinstellung Leistungsbegrenzung
- -- Kennlinienverschiebung durch Steuerdrucksignal
- Grundeinstellung Druckabschneider
- -- Kennlinienverschiebung durch Steuerdrucksignal

Maße. LP-Regler

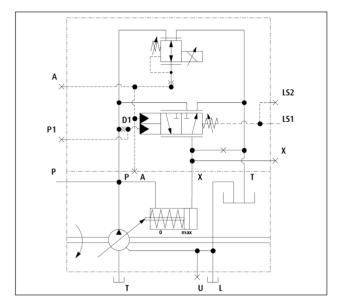


Maße: ca. 151 x 105,6 x 37 mm

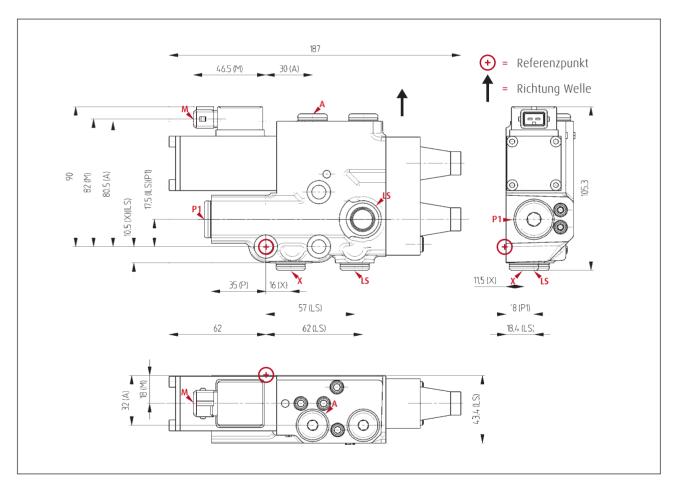

Anschlüsse: X Messanschluss Stelldruck M14x1,5

LS1, 2 Load Sensing Signal / Messanschluss M14x1,5 P1 Messanschluss Pumpendruck M14x1,5

Maße. H1L-Regler


Maße: ca. 196,6 x 62,3, x 54,8 mm

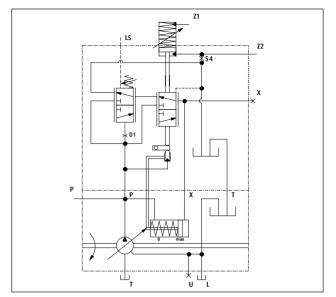
Anschlüsse: A Messanschluss Steuerdruck M14x1,5

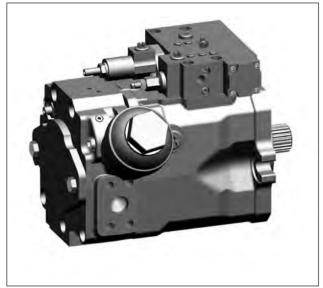

X Messanschluss Stelldruck M14x1,5 LS/LS2 Load Sensing Signal / Messanschluss M14x1,5

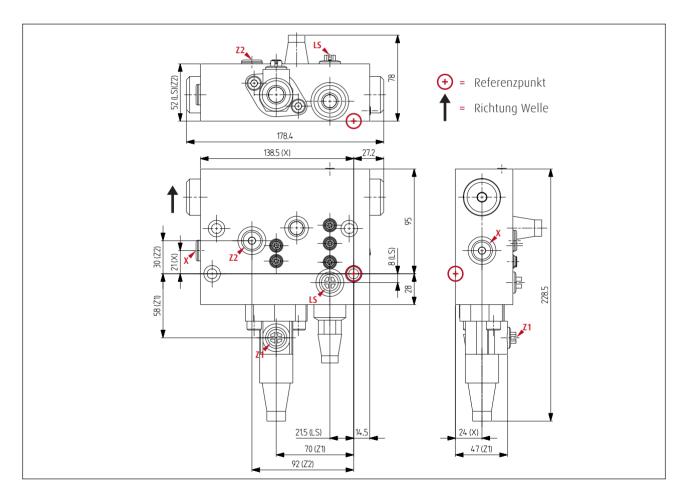
P1 Messanschluss Pumpendruck 12 S (ISO 8434-1)

Maße. E1L-Regler

Maße: ca. 187 x 105,3 x 43,4 mm

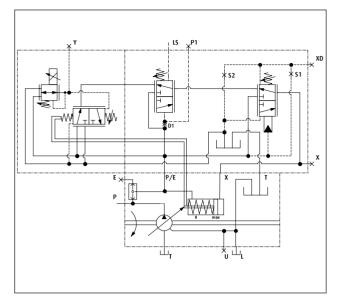

Anschlüsse: A Messanschluss Steuerdruck M14x1,5


X Messanschluss Stelldruck
 LS1,2 Load Sensing Signal / Messanschluss
 P1 Messanschluss Pumpendruck
 M14x1,5
 M14x1,5
 M14x1,5
 M14x1,5

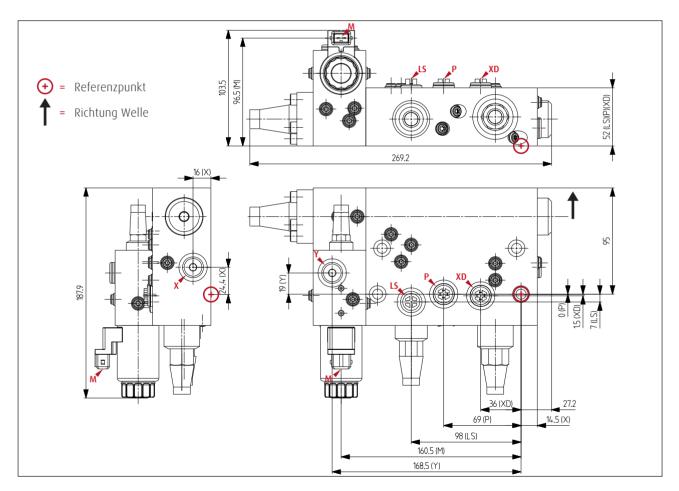

M Magnet AMP-JPT (Beispiel)

Weitere Informationen unter Kapitel <<Regler. Elektrische Eigenschaften>>

Maße. TL2-Regler

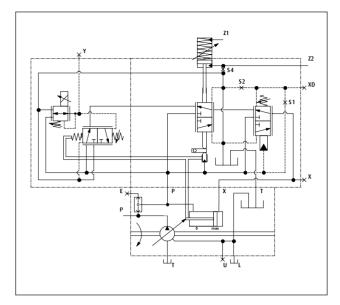

Maße: ca. 178,4 x 228,5 x 78 mm

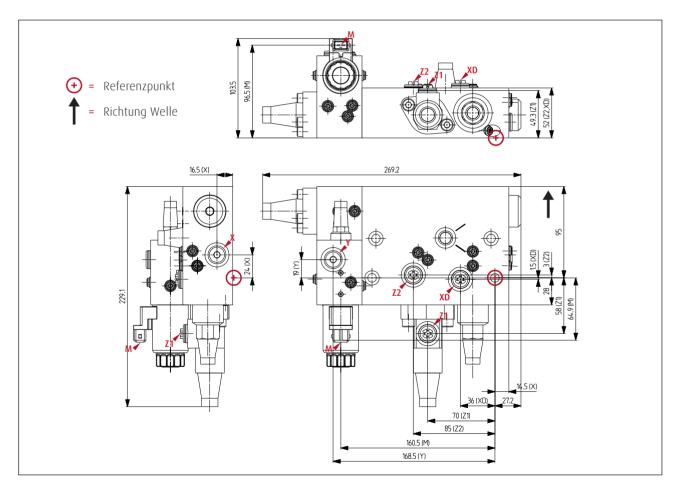

Anschlüsse: X Messanschluss Stelldruck M14x1,5


LS Load Sensing Signal M14x1,5 Z1/Z2 Steuerdruckanschluss Mode Schaltung M14x1,5

35

Maße. LEP-Regler





Maße:	ca. 26	9,2 x 187,9 x 103,5 mm				
Anschlüsse:	Χ	Messanschluss Stelldruck	M14x1,5			
	Υ	Messanschluss Druckminderventil	M14x1,5			
	XD	Anschluss für externen Druckabschneider	M14x1,5			
	LS	Load Sensing Signal	M14x1,5			
	Р	Messanschluss Pumpendruck	M14x1,5			
	M	Magnet AMP-JPT (Beispiel)				
		Weitere Informationen unter Kapitel < <regler. eigenschaften="" elektrische="">></regler.>				

Maße. ETP-Regler

Maße: ca. 269,2 x 229,1 x 103,5 mm

Anschlüsse: X Messanschluss Stelldruck M14x1,5

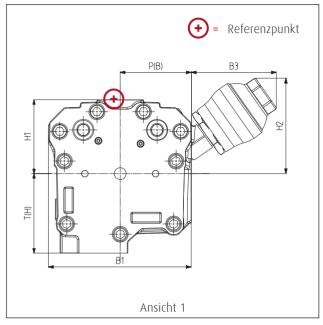
Y Messanschluss Druckminderventil M14x1,5 XD Anschluss für externen Druckabschneider M14x1,5 Z1/Z2 Steuerdruckanschluss für Mode-Schaltung M14x1,5

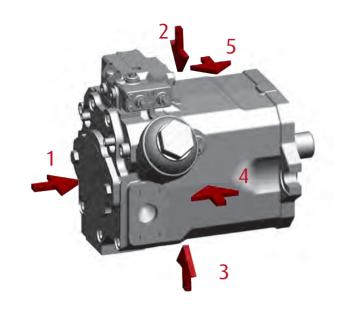
M Magnet AMP-JPT (Beispiel)

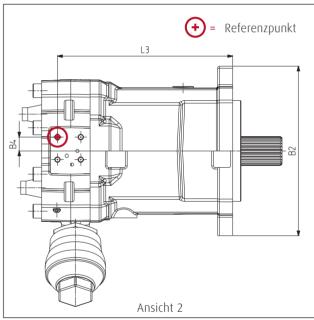
Weitere Informationen unter Kapitel <<Regler. Elektrische Eigenschaften>>

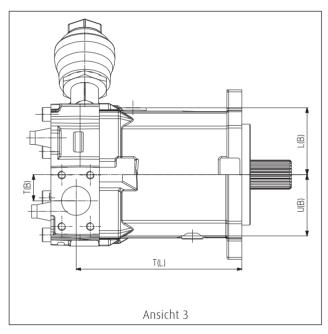
Maße. Einzelpumpe HPR-02 für LP, E1L, H1L

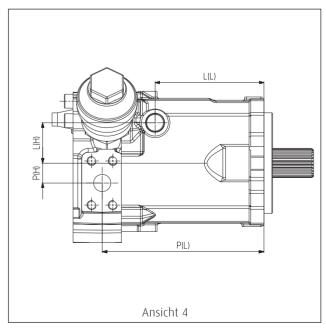
Die Bemaßung erfolgt anhand einer beispielhaften Pumpenkonfiguration. Die äußeren Abmaße sind entscheidend von der individuellen Konfiguration mit entsprechenden Reglern, Laufrichtung, optionaler SPU und den Einstellwerten der Pumpe abhängig. Weitere Informationen siehe zugehörige Abschnitte im Datenblatt, insbesondere <<Momentenübertragung. Anbauflansch>> und <<Momentenübertragung. Antriebswelle>>.

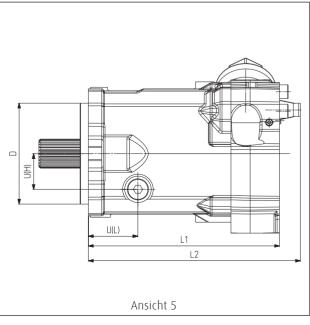

Abmaße der Pumpe ohne Regler


Nenngröße	55	75	105	135	165	210	280
D	127	127	127	152,4	152,4	165,1	224
L1	220,3	231,8	262	284,5	333,1	348	403
L2	259,3	270,8	301	323,5	372,1	387	442
L3	207,3	220,3	241	263,5	317,1	333	375
H1	100	102	103,5	111,5	128,5	134,5	152
H2	146	146	136	145,5	152,4	143,5	238
B1	111	190,3	199,6	216	251,5	268	306,1
B2	208	208	207	256	269	268,8	314,5
В3	120	111	122	129	128,9	126,5	125,1
B4	21	21	21	21	19	21	21


Anschlüsse


Nenngröße	55	75	105	135	165	210	280
Р	3/4"	3/4"	1"	1 1/4"	1 1/4"	1 ½"	1 ½"
P(L)	182,8	194,3	218	243,5	283,1	295	344,5
P(H)	23,5	23,5	26	30	43	27	46
P(B)	91	90,5	100	107	134,5	134,5	149,5
Т	1 ½"	1 ½"	2"	2"	2 ½"	3"	3 ½"
T(L)	189,8	201,3	227	249,5	285,6	298	344,5
T(H)	94	94	103,5	120	119	149	167
T(B)	21	21	25	30	0	57	57
L/U	M22x1,5	M22x1,5	M22x1,5	M27x2	M27x2	M27x2	M33x2
L(L)	112,8	124,3	142	164	180,6	197,5	215,5
L(H)	52	52	53	61	65	71,5	80,5
L(B)	86,5	86,5	85	101,5	108	128	145
U(L)	72	72	72	74,5	81,1	83	109
U(H)	44	44	54	54	62	60	68
U(B)	78,5	78,5	92,5	92,5	101	118	129,5

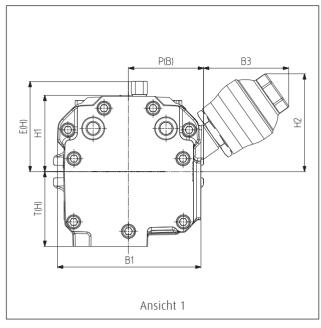

Maße. Einzelpumpe HPR-02 für LP, E1L, H1L

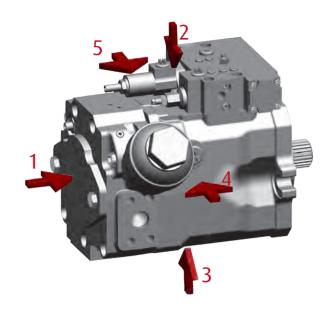


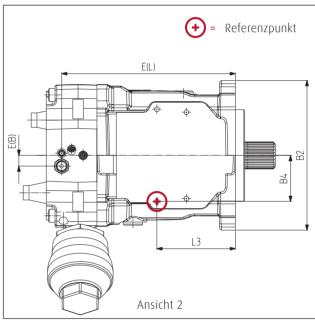
Maße. Einzelpumpe HPR-02 für TL2, LEP, ETP

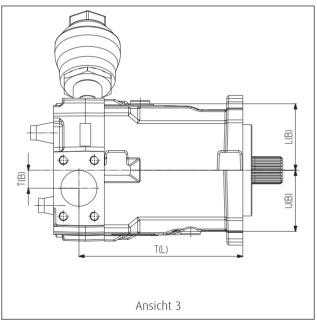
Die Bemaßung erfolgt anhand einer beispielhaften Pumpenkonfiguration. Die äußeren Abmaße sind entscheidend von der individuellen Konfiguration mit entsprechenden Reglern, Laufrichtung, optionaler SPU und den Einstellwerten der Pumpe abhängig. Weitere Informationen siehe zugehörige Abschnitte im Datenblatt, insbesondere <<Momentenübertragung. Anbauflansch>> und <<Momentenübertragung. Antriebswelle>>.

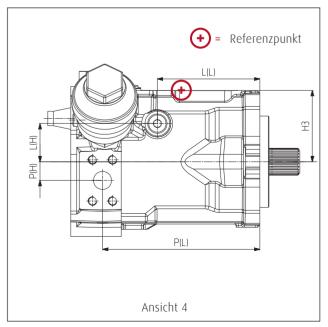
Abmaße der Pumpe ohne Regler

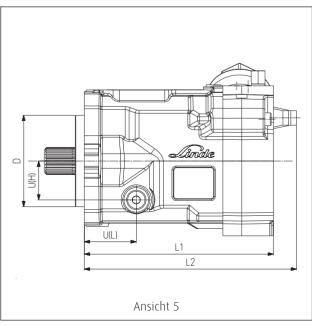

Nenngröße	105	105	135	210	280	280
Ausführung nach ISO 3019	-1	-2	-1	-1	-1	-2
D	127	125	125,4	165,1	165	224
L1	262	272	284,5	348	403	403
L2	301	311	323,5	387	442	442
L3	108,9	118,5	82,8	138,5	168	168
H1	104,5	104,5	111,5	134,5	152	152
H2	134	134	144	144,3	200,7	238
Н3	104,5	104,5	104	135	135	144,5
B1	194,5	194,5	214,8	266,3	314,5	314,5
B2	208	208	256,5	269	272	272
В3	118	116	106,7	102,4	119,2	120,2
B4	64	64	64	64	82,5	82,5

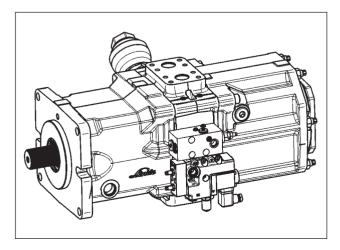

Anschlüsse


Р	1"	1"	1 1/4"	1 ½"	1 ½"	1 ½"
P(L)	218	228	243,5	295	344,5	344,5
P(H)	26	26	30	27	46	46
P(B)	100	100	107	144,5	154,1	155,5
T	2"	2"	2"	3"	3 ½"	3 ½"
T(L)	227	237	249,5	298	344,5	344,5
T(H)	104	104	120	149	167	167
T(B)	25	25	39,5	27	44	57
L/U	M22x1,5	M22x1,5	M27x2	M27x2	M33x2	M33x2
L(L)	142	152	164	191	215,5	215,5
L(H)	53	53	61	97,5	80,5	80,5
L(B)	92,5	92,5	101	128	129,5	144,9
U(L)	72	82	74,5	83	109	109
U(H)	54	54	54	60	68	68
U(B)	85	85	92	118	159,5	131,3
E*	M14x1,5	M14x1,5	M14x1,5	M14x1,5	M14x1,5	M14x1,5
E(L)	240,8	250,8	249,5	303	375	346
E(H)	135,6	135,6	142,6	165,6	183,1	183,1
E(B)	15	15	16	20	20	20

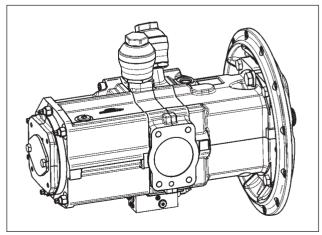

^{*)} nur ETP-Regler: Externe Steuerdruckversorgung


Maße. Einzelpumpe HPR-02 für TL2, LEP, ETP



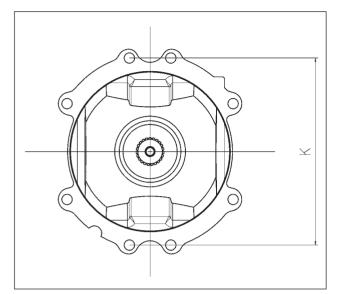


Maße. Doppelpumpen und Einschubeinheiten.

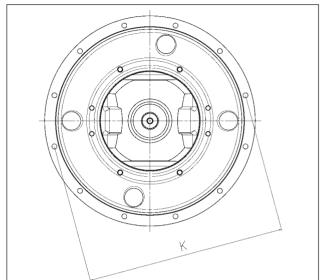

Doppelpumpen bestehen aus zwei HPR-Triebwerken, die "back-to-back" an eine gemeinsame Steuerbodenaufnahme angeordnet sind und sich einen Sauganschluss teilen. Sie sind so kompakter als ein Tandem aus zwei Standardpumpen. Im Vergleich zu Pumpen gleicher Gesamtnenngröße mit nur einem Triebwerk besitzen sie eine höhere Maximaldrehzahl und schlankere radiale Abmaße. Ein PTO-Druchtrieb ist möglich. Die Lage der Anschlüsse, Regler und SPU weicht bei diesen Einheiten von den zuvor dargestellten ab. Weitere Details auf Anfrage.

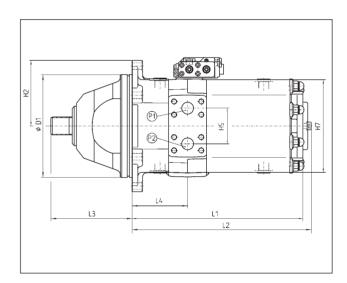
Nenngröße	105D	105D	105D	165D	165D
Kreise		Einkreispumpe		Einkreis- oder Z	weikreispumpe
Flansch	SAE C mit 4 Zusatz- bohrungen	Einschub	SAE 3 / SAE 4	SAE D mit 4 Zusatz- bohrungen	SAE 3
D1 [mm]	127	216		152,4	
D2 [mm]	-	-	SAE J617a	-	SAE J617a
D3 [mm]	-	-		-	
B1 [mm]	124	124	124	147	147
B2 [mm]	120	120	120	136	136
B4 [mm]	-	222	222	162,3	162,3
H1 [mm]	107	141	141	116	116
H2 [mm]	107	141	141	116	116
H3 [mm] (105:LP, 165 E1L)	138	144	144	170	170
H4 [mm]	-	137	137	255	255
H5 [mm] Anschluss P	75	75	75	80	80
H6 [mm] Anschluss T	38	38	38	0	0
H7 [mm]	195	196	196	260	260
L1 [mm]	474	358	450	587,6	587,6
L2 [mm]	478	376	468	601	625
L3 [mm]	61,3	171	79	74,6	50,1
L4 [mm]	232	116	208	286,1	310,6
P (SAE)	2 x 1"	2 x 1"	2 x 1"	2 x 1 ¼"	2 x 1 ¼"
T (SAE)	1 x 3"	1 x 3"	1 x 3"	1 x 4"	1 x 4"
L	M22x1,5	M22x1,5	M22x1,5	M27x2	M27x2
U	M22x1,5	M22x1,5	M22x1,5	M27x2	M27x2

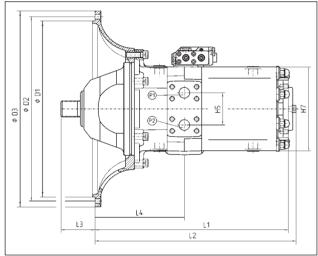
Doppelpumpe mit SAE J744 Flansch

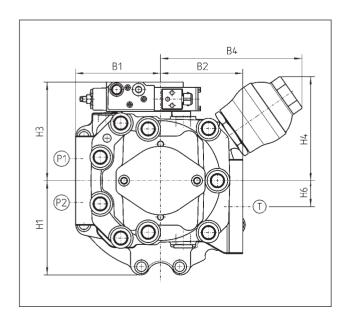


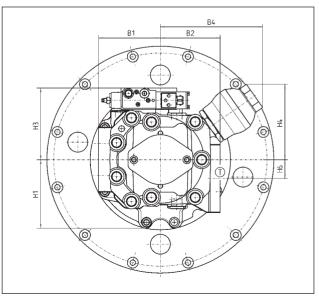
Doppelpumpe mit SAE J617a Flansch

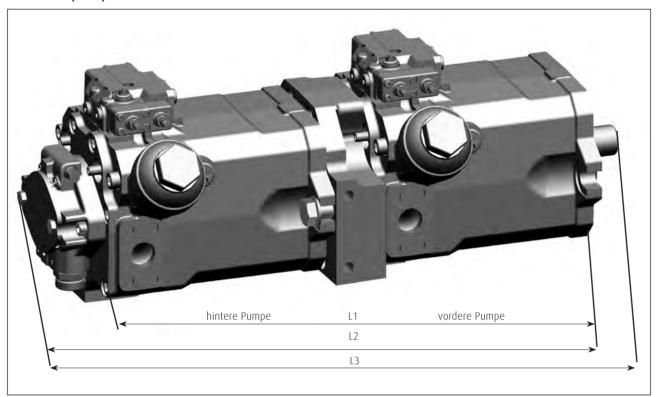



Maße. Doppelpumpen und Einschubeinheiten.


Einbauflansch



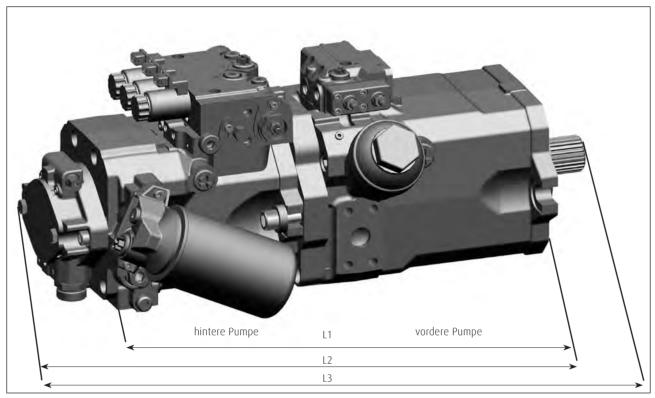

SAE 3 Kupplungsglocke



Maße. Mehrfachpumpen

Mehrfachpumpen entstehen durch die Kombination von Pumpen-Einzelaggregaten, wobei die Pumpen der Leistung nach angeordnet werden. Die Anordnung der Zahnradpumpe(n) am Ende des Aggregats ergibt optimalen Bauraum, Leistungsaufteilung und Gewichtsverteilung. Für die folgende Tabelle dient die angebaute Zahnradpumpe als Steuerölpumpe.

Mehrfachpumpe HPR-HPR-02


Gesamtlänge Mehrfachpumpe HPR-HPR-02

Nenngröße	Hintere Pumpe	HPR 55	HPR 75	HPR 105	HPR 135	HPR 165	HPR 210	HPR 280
Vordere Pumpe	Speise- pumpe	16 cm³	22,5 cm ³	22,5 cm ³	22,5 cm ³	38 cm³	38 cm³	38 cm ³
	L1	488	-	-	-	-	-	-
HPR 55	L2	548	-	-	-	-	-	-
	L3	602	-	-	-	-	-	-
	L1	500	511	-	-	-	-	-
HPR 75	L2	565	576	-	-	-	-	-
	L3	620	631	-	-	-	-	-
	L1	520	531	562	-	-	-	-
HPR 105	L2	585	596	627	-	-	-	-
	L3	640	651	682	-	-	-	-
	L1	536	547	578	619	-	-	-
HPR 135	L2	596	612	643	684	-	-	-
	L3	671	667	698	759	-	-	-
	L1	579	591	621	679	728	-	-
HPR 165	L2	754	766	796	854	903	-	-
	L3	829	841	871	929	978	-	-
	L1	600	612	642	701	749	751	-
HPR 210	L2	775	787	817	876	924	926	-
	L3	850	862	892	951	999	1001	-
	L1	669	680	711	727	775	790	845
HPR 280	L2	844	855	886	902	950	965	1020
	L3	919	930	961	977	1025	1040	1095

Maße. Mehrfachpumpen

Mehrfachpumpen entstehen durch die Kombination von Pumpen-Einzelaggregaten, wobei die Pumpen der Leistung nach angeordnet werden. Die Anordnung der Zahnradpumpe(n) am Ende des Aggregats ergibt optimalen Bauraum, Leistungsaufteilung und Gewichtsverteilung. Für die folgende Tabelle dient die angebaute Zahnradpumpe als Speisepumpe für die Verstellpumpe HPV-02.

Mehrfachpumpe HPR-HPV-02

Gesamtlänge Mehrfachpumpe HPR-HPV-02

Nenngröße	Hintere Pumpe	HPV 55	HPV 75	HPV 105	HPV 135	HPV 165	HPV 210	HPV 280
Vordere Pumpe	Speise- pumpe	16 cm³	22,5 cm ³	22,5 cm³	22,5 cm ³	38 cm³	38 cm³	38 cm³
	L1	493	-	-	-	-	-	-
HPR 55	L2	553	-	-	-	-	-	-
	L3	607	-	-	-	-	-	-
	L1	504	521	-	-	-	-	-
HPR 75	L2	569	586	-	-	-	-	-
	L3	624	641	-	-	-	-	-
	L1	525	542	567	-	-	-	-
HPR 105	L2	590	607	632	-	-	-	-
	L3	645	662	687	-	-	-	-
	L1	541	558	583	623	-	-	-
HPR 135	L2	601	623	648	688	-	-	-
	L3	676	678	703	763	-	-	-
	L1	584	601	626	683	715	-	-
HPR 165	L2	759	776	801	858	890	-	-
	L3	834	851	876	933	965	-	-
	L1	605	622	647	704	736	749	-
HPR 210	L2	780	797	822	879	911	924	-
	L3	855	872	897	954	986	999	-
	L1	674	691	716	730	762	788	834
HPR 280	L2	849	866	891	905	937	963	1009
	L3	924	941	966	980	1012	1038	1048

Merkmale Baukasten.

Die HPR-02 basiert auf einem modularen Baukasten und besteht aus den unten aufgeführten Merkmalen. Dies ermöglicht eine auf Ihre Anforderungen abgestimmte Produktkonfiguration. Bitte entnehmen Sie die jeweils aktuell verfügbaren Merkmale dem Model Code, der auf unserer Homepage zum Download bereitsteht.

- >> Nenngröße
- >> V_{max}
- >> Drehrichtung
- >> Pumpenregler
- >> Steckernorm der Elektromagnete
- >> Spannungsniveau der Elektromagnete
- >> Geräuschoptimierung SPU
- >> Anschlussnorm
- >> Montageflansch
- >> Antriebswelle

- >> PTO-Durchtrieb
- >> PTO-Anbauten
- >> Zahnradpumpen
- >> Zahnradpumpen-PTO
- >> Pumpeneinstellwerte wie Drehzahl, LS-Einstellung, Druckabschneider, Leitungsbegrenzer
- >> Druckabschneider-Fernverstellung
- >> Leistungsbegrenzer-Fernverstellung
- >> Oberflächenbehandlung
- >> Typenschild

Medienverzeichnis.

Produktkatalog

>> Turning Power into Motion

Broschüren

- >> Antriebssysteme für Baumaschinen.
- >> Antriebssysteme für Landmaschinen.

Datenblätter

- >> Model Code. Konfiguration der Baureihe 02
- >> HMF/A/V/R-02. Hydraulikmotoren für den geschlossenen und offenen Kreislauf
- >> HPR-02. Regelpumpen für den offenen Kreislauf
- >> HPV-02. Verstellpumpen für den geschlossenen Kreislauf
- >> VT modular. Baukastensystem für LSC Steuerplatten
- >> Linde Druckdefinitionen. Nach DIN 24312
- >> Hydrauliköle auf Mineralölbasis

So erreichen Sie uns.

Post Linde Hydraulics GmbH & Co. KG

Wailandtstraße 13 63741 Aschaffenburg

Telefon +49 6021 150 00 Zentrale Fax +49 6021 150 11570

E-Mail info@linde-hydraulics.com Internet www.linde-hydraulics.com

Vertriebsgesellschaften.

- (ES) Linde Hydraulics Ibérica, S.L.U.

 Avda. Prat de la Riba, 181, 08780 Palleja (Barcelona), Phone +34 93 663 32 58, info@linde-hydraulics.com.es
- (FR) Linde Hydraulics France SARL

 1, rue du Maréchal de Lattre de Tassigny, 78854 Elancourt, Phone +33 130 684 675, info@linde-hydraulics.com
- (GB) Linde Hydraulics Limited
 12-13 Eyston Way, Abingdon Oxfordshire OX14 1TR, Phone +44 1235 522 828, enquiries@lindehydraulics.co.uk
- (IT) Linde Hydraulics Italia SpA Viale dell'Unione Europea, 33, 21013 Gallarate (VA), Phone +39 0331 182 4910, info.it@linde-hydraulics.com
- (USA) Linde Hydraulics Corporation
 5089 Western Reserve Road, Canfield Ohio 44 406, Phone +1 330 533 6801, info@linde-hydraulics.co
- (BR) Linde Hydraulics South America
 Av. Leôncio de Magalhães, 1004 cj. 33, 02042-001 São Paulo, Phone +55 11 2281 7879, info.br@linde-hydraulics.co
- (CN) Linde Hydraulics (China) Co., Ltd.

 No. 197 Weian Road, High-Tech Development Zone, 261000 Weifang, Phone +86 536 5075293, info@linde-hydraulics.com.cn

 No. 89 Jinshang Road, 361009 Xiamen, Phone +86 592 53 87 701, info@linde-hydraulics.com.cn

Besuchen Sie www.linde-hydraulics.de/worldwide, um einen Händler in Ihrer Nähe zu finden.

