

HYDRAULIC COMPONENTS
HYDROSTATIC TRANSMISSIONS
GEARBOXES - ACCESSORIES

GEARBOXES - ACCESSORIES

Certified Company ISO 9001:2015 - 14001:2015

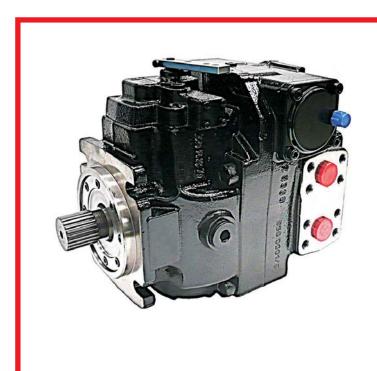
Certified Tompany ISO 9001:2015 - 14001:2015

Certified N 12-02000515-TIC Certificate N 12-0200051-TIC Certificat

Via M. L. King, 6 - 41122 MODENA (ITALY)

Tel: +39 059 415 711 Fax: +39 059 415 730

INTERNET: http://www.hansatmp.it


E-MAIL: hansatmp@hansatmp.it

HT 16 / M / 857 / 0219 / E

### THE PRODUCTION LINE OF HANSA-TMP

# Variable Displacement Closed Loop System Axial Piston Pump

# **TPV 9000**







# **CONTENTS**

| 1) Order Code                                        | 4 - 6   |
|------------------------------------------------------|---------|
| 2) Main Features                                     |         |
| 2.1) General Information                             | 7       |
| 2.2) Technical Data                                  | 7       |
| 2.2.1) Operating Parameters                          | 7       |
| 2.2.2) Hydraulic Fluid                               | 7       |
| 2.2.3) Filtration                                    | 7       |
| 2.3) Controls                                        |         |
| 2.3.1) MS, MZ, MY1, MY2 - Manual Controls            | 8 - 9   |
| 2.3.2) MT, MZT, MX - Manual Controls for Traction    | 10 - 11 |
| 2.3.3) RE - Remote Electric Control 12V/24V Solenoid | 12      |
| 2.3.4) E - Electric ON/OFF Control 12V/24V Solenoid  | 13      |
| 2.3.5) EP - Electric Proportional Control            | 14      |
| 2.3.6) HP - Hydraulic Proportional Control           | 15      |
| 2.3.7) HD - Hydraulic Direct Control                 | 16      |
| 2.3.8) Installation Details                          | 17      |
| 2.4) Sizes                                           |         |
| 2.4.1) TPV 55                                        | 18      |
| 2.4.2) TPV 55B                                       | 19      |
| 2.4.3) TPV 72                                        | 20      |
| 2.4.4) TPV 72B                                       | 21      |
| 2.4.5) TPV 90 / 110                                  | 22 - 25 |
| 2.5) Through Drive Dimensions                        | 26      |
| 2.6) High Pressure Relief Valves                     | 26      |
| 2.7) Tightening Torques                              | 26      |
| 3) Installation Instructions                         |         |
| 3.1) Below Tank Installation                         | 27      |
| 3.2) Start-up Procedure                              | 28      |
| 3.2.1) Preliminary Indications                       | 28      |
| 3.2.2) Hydraulic Circuit                             | 28      |
| 3.2.3) Start                                         | 29      |

# Variable Displacement Closed Loop System Axial Piston Pump



# I) ORDER CODE

| 1   | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 |
|-----|---|---|---|---|----|---|---|---|----|----|----|
| TPV |   |   |   | V | C4 |   |   |   |    |    |    |

| 1    | PRODUCT GROUP AND FAMILY                                       |       |       |       |        |  |  |  |  |
|------|----------------------------------------------------------------|-------|-------|-------|--------|--|--|--|--|
| TPV  | Axial piston pump for closed loop circuit                      |       |       |       |        |  |  |  |  |
| 2    | DISPLACEMENT                                                   |       |       |       |        |  |  |  |  |
| 55   | 55,0 cm³ (@18°)                                                |       |       |       |        |  |  |  |  |
| 55B* | 55,0 cm³ (@18°)                                                |       |       |       |        |  |  |  |  |
| 72   | 72,1 cm³ (@18°)                                                |       |       |       |        |  |  |  |  |
| 72B* | 72,1 cm³ (@18°)                                                |       |       |       |        |  |  |  |  |
| 90   | 89,2 cm³ (@18°)                                                |       |       |       |        |  |  |  |  |
| 110  | 110,0 cm³ (@18°)                                               |       |       |       |        |  |  |  |  |
| 3    | DIRECTION OF ROTATION                                          | TPV55 | TPV72 | TPV90 | TPV110 |  |  |  |  |
| R    | Right, i.e. clockwise (CW) view from shaft end                 | Α     | А     | Α     | А      |  |  |  |  |
| L    | Left, i.e. counterclockwise (CCW) view from shaft end          | А     | А     | А     | А      |  |  |  |  |
| 4    | CONTROL DEVICE                                                 | TPV55 | TPV72 | TPV90 | TPV110 |  |  |  |  |
| 0    | Without control, fixed displacement                            | R     | R     | R     | R      |  |  |  |  |
| MS   | Manual servo control                                           | Α     | А     | Α     | А      |  |  |  |  |
| MZ   | Manual servo control with neutral position switch              | Α     | Α     | Α     | А      |  |  |  |  |
| MYI  | Manual servo control with N.P. switch & 12V emergency stop     | -     | -     | Α     | Α      |  |  |  |  |
| MY2  | Manual servo control with N.P. switch & 24V emergency stop     | -     | -     | Α     | А      |  |  |  |  |
| MT   | Manual servo for traction                                      | -     | -     | Α     | А      |  |  |  |  |
| MZT  | Manual servo for traction control with neutral position switch | А     | А     | -     | -      |  |  |  |  |
| MX   | Manual servo for traction with neutral position switch & BBS   | А     | Α     | -     | -      |  |  |  |  |
| REI  | Remote electric control 12V solenoid                           | -     | -     | Α     | Α      |  |  |  |  |
| RE2  | Remote electric control 24V solenoid                           | -     | -     | Α     | А      |  |  |  |  |
| EI   | Electric ON/OFF control 12V solenoid                           | Α     | Α     | Α     | Α      |  |  |  |  |
| E2   | Electric ON/OFF control 24V solenoid                           | Α     | А     | Α     | Α      |  |  |  |  |
| EPI  | Electric proportional control 12V solenoid                     | А     | Α     | Α     | Α      |  |  |  |  |
| EP2  | Electric proportional control 24V solenoid                     | Α     | Α     | Α     | Α      |  |  |  |  |
| HP   | Hydraulic proportional pilot pressure related                  | Α     | Α     | А     | А      |  |  |  |  |
| HD   | Hydraulic proportional pilot pressure related (direct acting)  | Α     | Α     | Α     | Α      |  |  |  |  |
| 5    | SHAFT SEAL                                                     | TPV55 | TPV72 | TPV90 | TPV110 |  |  |  |  |
| V    | Viton                                                          | -     | А     | А     | Α      |  |  |  |  |

 $<sup>^{*}</sup>$  TPV 55B and TPV 72B are special simplified version of TPV 55 and TPV 72.

They are available only with MS or MY control, for typical application on transit concrete mixers.



| 1   | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 |
|-----|---|---|---|---|----|---|---|---|----|----|----|
| TPV |   |   |   | V | C4 |   |   |   |    |    |    |

| 6          | MOUNTING FLANGE                                                                                                        | TPV55 | TPV72 | TPV90 | TPV110 |
|------------|------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|--------|
| B2         | SAE J 744 – SAE B two bolts                                                                                            | -     | -     | -     | -      |
| C4         | SAE J 744 – SAE C four bolts                                                                                           | Α     | А     | Α     | Α      |
| <b>S</b> 4 | Special flange 4-holes for tandem coupling                                                                             | Α     | R     | -     | -      |
| 7          | SHAFT END                                                                                                              | TPV55 | TPV72 | TPV90 | TPV110 |
| I3N        | ANSI B92.1A – 1976 – 7/8" 13T 16/32 DP                                                                                 | -     | -     | -     | -      |
| I4N        | ANSI B92.1A – 1976 – 1 1/4" 14T 12/24 DP                                                                               | Α     | R     | R     | R      |
| 15N        | ANSI B92.1A – 1976 – 1"15T 16/32 DP                                                                                    | -     | -     | -     | -      |
| 2IN        | ANSI B92.1A – 1976 – 1 3/8" 21T 16/32 DP                                                                               | Α     | Α     | R     | R      |
| 21F        | ANSI B92.1A – 1976 – 1 3/8" 21T 16/32 DP with coupling flange                                                          | R     | R     | R     | R      |
| 21F1       | ANSI B92.1A – 1976 – 1 1/2" 21T 16/32 DP SPECIAL coupling flange                                                       | R     | R     | -     | -      |
| 23N        | ANSI B92.1A – 1976 – 1 1/2" 23T 16/32 DP                                                                               | -     | -     | Α     | Α      |
| 23F        | ANSI B92.1A – 1976 – 1 1/2" 23T 16/32 DP with coupling flange                                                          | -     | -     | Α     | Α      |
| 23F1       | ANSI B92.1A – 1976 – 1 1/2" 23T 16/32 DP SPECIAL coupling flange                                                       | -     | -     | Α     | Α      |
| CI5        | Tapered 1.5" shaft                                                                                                     | -     | R     | R     | R      |
| TI         | Tandem [hub for ANSI B92.1A – 1976 – 1 1/4" 19T 16/32 DP for coupling with a TPV 90 front pump or a TPV 110 front pump | R     | R     | -     | -      |
| T2         | Tandem [hub for ANSI B92.1A – 1976 – 24T 32/64 DP                                                                      | Α     | -     | -     | -      |
| Т3         | Tandem [hub for ANSI B92.1A – 1976 – 30T 32/64 DP                                                                      | -     | R     | -     | -      |
| 8          | THROUGH DRIVE                                                                                                          | TPV55 | TPV72 | TPV90 | TPV110 |
| 0          | No through drive                                                                                                       | Α     | Α     | Α     | Α      |
| AI         | Flange SAE A (SAE J 744) / Splined hub 9T-16/32 (ANSI B92.1A)                                                          | Α     | Α     | Α     | А      |
| <b>A</b> 3 | Flange SAE A (SAE J 744) / Splined hub 11T-16/32 (ANSI B92.1A)                                                         | R     | R     | R     | R      |
| ВІ         | Flange SAE B (SAE J 744) / Splined hub 13T-16/32 (ANSI B92.1A)                                                         | Α     | Α     | А     | А      |
| TI         | Tandem [Flange SAE C (SAE J 744) / Splined shaft 19T-16/32 (ANSI B92.1A)]                                              | -     | R     | R     | R      |
| Т2         | Tandem [Special flange 4-holes / Splined shaft 24T-32/64 (ANSI B92.1A)]                                                | R     | R     | -     | -      |
| <b>T</b> 3 | Tandem [Special flange 4-holes / Splined shaft 30T-32/64 (ANSI B92.1A)]                                                | -     | R     | -     | -      |
| 9          | CHARGE PUMP                                                                                                            | TPV55 | TPV72 | TPV90 | TPV110 |
| 0          | No charge pump                                                                                                         | -     | -     | -     | -      |
| CP0        | Gerotor charge pump 13 cm <sup>3</sup>                                                                                 | -     | -     | -     | -      |
| CPI        | Gerotor charge pump 20 cm <sup>3</sup>                                                                                 | Α     | Α     | R     | R      |
| CP2        | Gerotor charge pump 28 cm <sup>3</sup> (for tandem configuration)                                                      | -     | -     | Α     | А      |
| 10         | RELIEF VALVE SETTING                                                                                                   | TPV55 | TPV72 | TPV90 | TPV110 |
| 420        | 420 bar                                                                                                                | Α     | А     | А     | А      |
| 380        | 380 bar                                                                                                                | Α     | А     | А     | А      |
| 350        | 350 bar                                                                                                                | Α     | А     | А     | А      |
| 330        | 330 bar                                                                                                                | Α     | Α     | А     | Α      |
| 300        | 300 bar                                                                                                                | Α     | Α     | Α     | А      |
| 280        | 280 bar                                                                                                                | Α     | Α     | Α     | А      |

# Variable Displacement Closed Loop System Axial Piston Pump



| 1   | 2        | 3                                                                                                                                       | 4                    | 5                       | 6                        | 7                | 8          | 9 | 1     | 10    | 11    | 12     |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|--------------------------|------------------|------------|---|-------|-------|-------|--------|
| TPV |          |                                                                                                                                         |                      | V                       | C4                       |                  |            |   |       |       |       |        |
| 250 | 2.       | 50 bar                                                                                                                                  |                      |                         |                          |                  |            |   | Α     | Α     | Α     | Α      |
| 220 |          | 20 bar                                                                                                                                  |                      |                         |                          |                  |            |   | -     | -     | -     | -      |
| 210 | 2        | 10 bar                                                                                                                                  |                      |                         |                          |                  |            |   | Α     | Α     | Α     | Α      |
| 200 | 20       | 00 bar                                                                                                                                  |                      |                         |                          |                  |            |   | Α     | А     | Α     | А      |
| 150 | 15       | 150 bar                                                                                                                                 |                      |                         |                          |                  |            |   | Α     | Α     | А     | А      |
| 11  | С        | HARGE PF                                                                                                                                | RESSURE              | RELIEF VA               | ALVE SETT                | ING              |            |   | TPV55 | TPV72 | TPV90 | TPV110 |
|     | at       | : 2000 rpm                                                                                                                              | and 0 dis            | placemen                | t                        |                  |            |   |       |       |       |        |
| Α   | 28       | 8 bar                                                                                                                                   |                      |                         |                          |                  |            |   | Α     | А     | А     | А      |
| 12  | SI       | PECIAL FE                                                                                                                               | ATURES               |                         |                          |                  |            |   | TPV55 | TPV72 | TPV90 | TPV110 |
| В   | W        | ith by-pas/                                                                                                                             | s valve              |                         |                          |                  |            |   | Α     | R     | R     | R      |
| Схх |          | With cut-off valve preset at relief setting value -xx bar Standard setting: 20bar                                                       |                      |                         |                          |                  |            |   | А     | А     | А     | А      |
| Fxx | S1       | With flushing valve (xx l/min if not standard) Standard setting: 7 l/min (available settings 7 or 11 or 15 l/min)                       |                      |                         |                          |                  |            | 5 | A     | R     | R     | R      |
| DI  | W        | /ith 12V d                                                                                                                              | ead-man              | valve                   |                          |                  |            |   | Α     | R     | R     | R      |
| D2  | W        | /ith 24V d                                                                                                                              | ead-man              | valve                   |                          |                  |            |   | А     | R     | R     | R      |
| EF  |          | xternal filt<br>ot include                                                                                                              |                      | pressure                | line of ch               | narge pu         | mp (filter |   | R     | R     | R     | R      |
| IFC |          | iternal filt<br>ssembled                                                                                                                |                      | -                       |                          |                  | •          |   | R     | R     | R     | R      |
| IFV | In<br>as | iternal filt<br>ssembled                                                                                                                | ration of<br>on pump | pressure<br>b) with vis | line of ch<br>sual indic | arge pui<br>ator | mp (filter |   | R     | R     | R     | R      |
| IFT | as       | Internal filtration of pressure line of charge pump (filter assembled on pump) with both clogging indicator switch and visual indicator |                      |                         |                          |                  |            |   | R     | R     | R     | R      |
| К   | D        | Destroked maximum displacement                                                                                                          |                      |                         |                          |                  |            |   | Α     | R     | R     | R      |
| R   | A        | Adjustable maximum displacement                                                                                                         |                      |                         |                          |                  |            |   | А     | R     | R     | R      |
| Px  | N        | lounted w                                                                                                                               | ith auxili           | ary pum                 | )                        |                  |            |   | R     | R     | R     | R      |

| LEGEND |         |                         |    |   |           |     |   |            |     |    |              |
|--------|---------|-------------------------|----|---|-----------|-----|---|------------|-----|----|--------------|
| A      |         | available<br>oreferred) | A  |   | available | R   |   | on request | -   | n  | ot available |
| EXAMPL | EXAMPLE |                         |    |   |           |     |   |            |     |    |              |
| 1      | 2       | 3                       | 4  | 5 | 6         | 7   | 8 | 9          | 10  | 11 | 12           |
| TPV    | 90      | R                       | MS | V | C4        | 23N | 0 | CP2        | 420 | Α  | /            |



#### 2) MAIN FEATURES

#### 2.1) General Information

TPV 9000 is a variable displacement, swash plate axial piston pump and it is used in closed loops. The pump was developed for use on hydraulic transmissions, where high speeds and high torques are demanded. The displacement can be varied by changing the inclination of the pump swash plate using a suitable proportional regulator. The direction of flow can be changed with the variation of the swash plate inclination respect to a neutral point.

The construction features help to minimize the losses due to leakage and considerably reduces the frictions. The small sizes allow easy installations and the technical solutions chosen optimize modulation of requested flow for a smooth and quiet operation.

The TPV 9000 pumps is equipped with two high pressure relief valves to protect the circuit from overloads and with anti-cavitation integrated system.

#### 2.2) Technical Data

#### 2.2.1) Operating Parameters

| Model                  | Model               |                 |       |       |       | TPV 110 |
|------------------------|---------------------|-----------------|-------|-------|-------|---------|
| Displacement           | ٧                   | cm <sup>3</sup> | 55    | 72    | 90    | 110     |
| Maximum speed          | n <sub>max</sub>    | rpm             | 4.300 | 4.100 | 4.000 | 3.800   |
| Minimum speed          | n <sub>min</sub>    | rpm             | 500   | 500   | 500   | 500     |
| Maximum flow           | $\mathbf{q}_{\max}$ | l/min           | 237   | 295   | 340   | 400     |
| Nominal pressure       | P <sub>nom</sub>    | bar             | 400   | 400   | 400   | 400     |
| Maximum pressure       | P <sub>max</sub>    | bar             | 450   | 450   | 450   | 450     |
| Maximum power          | P <sub>max</sub>    | kW              | 130   | 156   | 180   | 210     |
| Theoretical max torque | C <sub>max</sub>    | Nm              | 350   | 480   | 570   | 700     |
| Weight                 | M                   | Kg              | 42    | 56    | 68    | 68      |

#### 2.2.2) Hydraulic Fluid

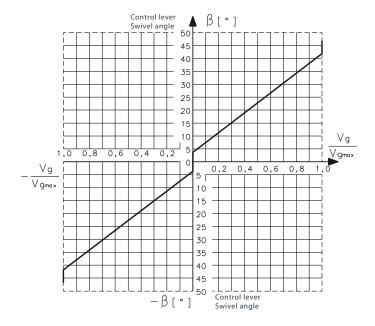
| Recommended Hydraulic Fluid                | Mineal Oil High Viscosity Index |     |         |  |  |
|--------------------------------------------|---------------------------------|-----|---------|--|--|
| Operating viscosity*                       | ν                               | cSt | 16 ÷ 36 |  |  |
| Maximum viscosity Short term at cold start | <b>V</b> <sub>max</sub>         | cSt | ≤1600   |  |  |
| Minimum viscosity at maximum temperature   | $v_{min}$                       | cSt | ≥7      |  |  |
| Maximum working temperature of the fluid   | T <sub>max</sub>                | °C  | 90      |  |  |

<sup>\*</sup>Referred to the circuit temperature-closed circuit

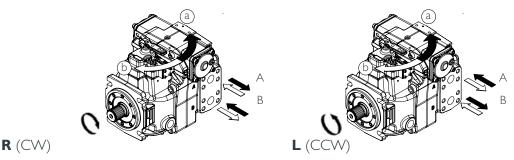
#### 2.2.3) Filtration

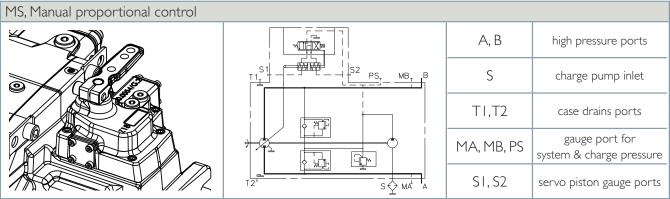
It is recommended for an efficient and lasting working life, a solid particle contamination level of 18/16/13 in according to ISO 4406. To ensure said level of contamination is not exceeded, filter should be chosen

accordingly, with filtration grade of  $\beta$ 10  $\geq$  2. In any case the contamination level must not be below 20/18/15 in according to ISO4406


### 2.3) Controls

#### 2.3.1) Manual controls (MS, MZ, MY1, MY2)

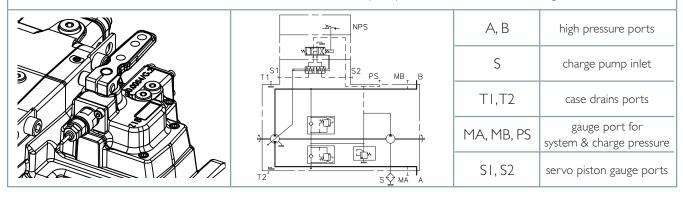

With the manual proportional control (**MS**) the displacement of the pump is directly proportional to the angle of the lever. The pump is fitted with a resetting device which automatically reset the lever to central position if no control takes place. The figure shows the relation between angle and displacement.


| Characteristic points of operations |                                                |  |  |  |  |  |  |
|-------------------------------------|------------------------------------------------|--|--|--|--|--|--|
| Start of control at β               | 3,7°                                           |  |  |  |  |  |  |
| End of control at β                 | 41,7°<br>(max displacement Vg <sub>max</sub> ) |  |  |  |  |  |  |
| Mechanical stop for β               | ± 46,8°                                        |  |  |  |  |  |  |

NOTE: the displacement control valve spool can get stuck due to contamination (fluid contamination or abrasion contamination from transmission components). This can result in pump flow different from operator request. Please check if the application require any safety devices (i.e. emergency stop) in order to put the transmission driven output in a safe condition.



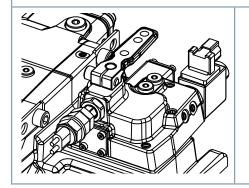
|             |          | lever direction | flow direction through the pump |  |  |
|-------------|----------|-----------------|---------------------------------|--|--|
|             | D (C)A() | а               | B in to A out                   |  |  |
| Direction   | R (CW)   | b               | A in to B out                   |  |  |
| of rotation |          | а               | A in to B out                   |  |  |
|             | L (CCW)  | Ь               | B in to A out                   |  |  |

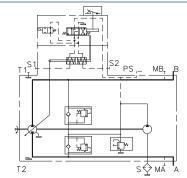







#### MZ, Manual servo control with neutral position switch


Same configuration as MS control but with an additional switch which is closed when the lever is in neutral position. The switch opens when the lever is moved out of the neutral position. The switch provides a monitoring function for drive units which shall not be started unless the pump is in neutral, i.e. diesel engines.



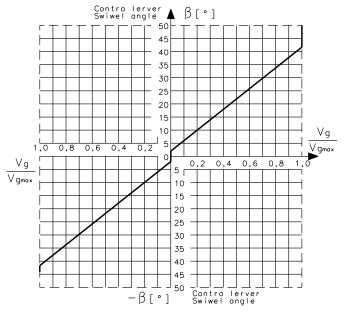

#### MY1, Manual servo control with N.P. switch & 12V emergency stop

#### MY2, Manual servo control with N.P. switch & 24V emergency stop

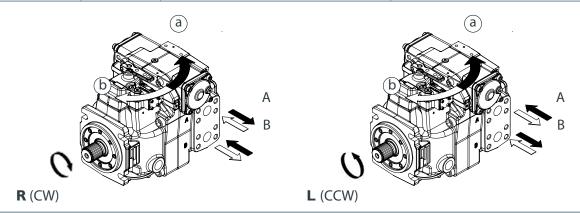
Same configuration as MZ control with the addition of a two position solenoid valve for electric pump de-stroke. This valve provide stop or emergency function when needed (i.e. drum stop or emergency stop of a concrete mixer drum).

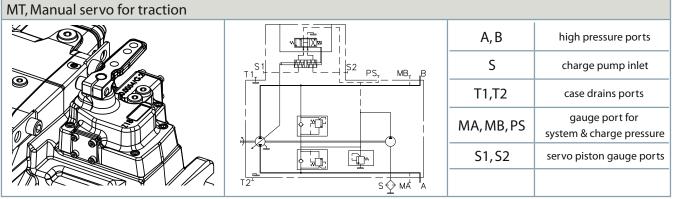





| A, B       | high pressure ports                     |  |
|------------|-----------------------------------------|--|
| S          | charge pump inlet                       |  |
| TI,T2      | case drains ports                       |  |
| MA, MB, PS | gauge port for system & charge pressure |  |
| S1, S2     | servo piston gauge ports                |  |



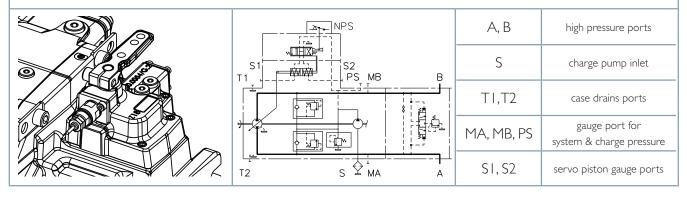

### 2.3.2) Manual controls for traction (MT, MZT, MX)


Same configuration of MS but with an open center spool. It is specifically designed for traction control on mobile vehicles.

| Characteristic points of operations     |                                               |  |  |
|-----------------------------------------|-----------------------------------------------|--|--|
| Start of control at β 2°                |                                               |  |  |
| End of control at β                     | 40,6°<br>(max displacementVg <sub>max</sub> ) |  |  |
| Mechanical stop for $\beta$ $\pm$ 46,8° |                                               |  |  |

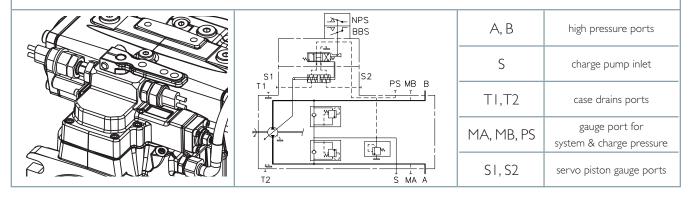


|             |           | lever direction | flow direction through the pump |
|-------------|-----------|-----------------|---------------------------------|
|             | D (CM)    | a               | B in to A out                   |
| Direction   | R (CW)    | b               | A in to B out                   |
| of rotation | 1 (CC)A() | a               | A in to B out                   |
|             | b         | B in to A out   |                                 |





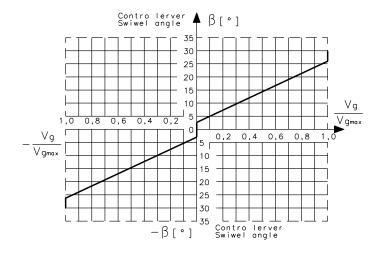




#### MZT, Manual servo control with neutral position switch (traction)

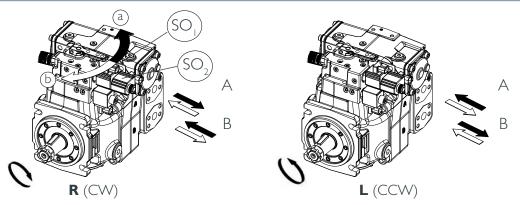
Same configuration as MT control but with an additional switch which is closed when the lever is in neutral position. The switch opens when the lever is moved out of the neutral position. The switch provides a monitoring function for drive units which shall not be started unless the pump is in neutral, i.e. diesel engines.



#### MX, Manual servo for traction with neutral pos. switch & BB


A variant of MZT is the MX control, with an additional switch (BBS, i.e. back bell switch). The switch gets closed when the lever rotate in one of the two directions. It can be used for instance to activate a sound alarm when the vehicle travels backward.




#### 2.3.3) RE, Remote electric control 12/24V solenoid

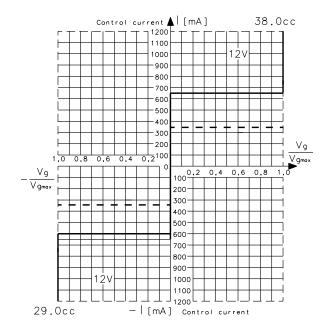
The remote electric control is a combined MS control with an integral hydraulic piston which is actuated by an integrated three position valve. The pumps is stroked or destroked by energizing either of the valve solenoids; when the solenoid is de-energized the pump stays at the last displacement reached by the pump. An additional solenoid is provided to implement the Stop function.

| Characteristic points of operations |                                                |  |  |
|-------------------------------------|------------------------------------------------|--|--|
| Start of control at β 2,7°          |                                                |  |  |
| End of control at β                 | 26,5°<br>(max displacement Vg <sub>max</sub> ) |  |  |
| Mechanical stop for β               | ± 30°                                          |  |  |

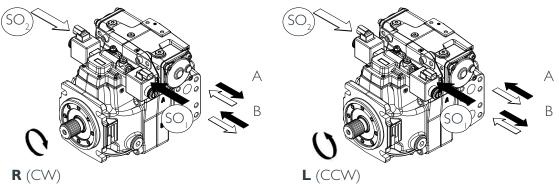


|                       |          | lever           | solenoid        | flow direction through the pump |
|-----------------------|----------|-----------------|-----------------|---------------------------------|
|                       | D (C)A() | a               | SO              | B in to A out                   |
| Direction of rotation | Ь        | SO <sub>2</sub> | A in to B out   |                                 |
|                       | . (CC)   | а               | SO              | A in to B out                   |
|                       | L (CCVV) | Ь               | SO <sub>2</sub> | B in to A out                   |




| Hydraulic scheme |            |                                            |  |
|------------------|------------|--------------------------------------------|--|
| T1ST S2 PS MB B  | А, В       | high pressure ports                        |  |
|                  | S          | charge pump inlet                          |  |
|                  | T1,T2      | case drains ports                          |  |
|                  | MA, MB, PS | gauge port for<br>system & charge pressure |  |
| T2 S MÁ A        | S1, S2     | servo piston gauge ports                   |  |

#### 2.3.4) E, Electric ON/OFF control 12 /24V solenoid


When the solenoids are energized the pump swivels to maximum displacement in one of the two flow directions. The pump is fitted with a resetting device which automatically reset the control spool to central position if no control takes place. The figure shows the relation between electric current and displacement.

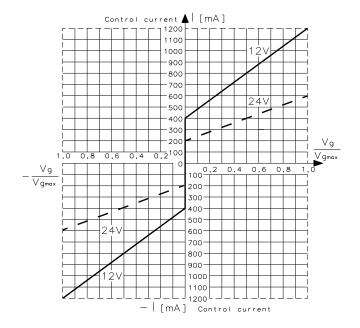
| Solenoid technical data | ΕI        | E 2       |  |  |
|-------------------------|-----------|-----------|--|--|
| Voltage                 | 12 (±20%) | 24 (±20%) |  |  |
| Current of Control      |           |           |  |  |
| Switching current       | 650 mA    | 330 mA    |  |  |

Standard solenoids include a manual pin-type override.

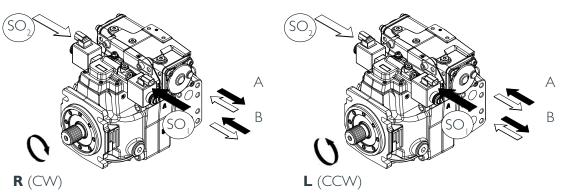


|                       |                 | solenoid        | flow direction through the pump |
|-----------------------|-----------------|-----------------|---------------------------------|
|                       | D (C)A()        | SO <sub>1</sub> | B in to A out                   |
| Direction of rotation | SO <sub>2</sub> | A in to B out   |                                 |
|                       |                 | SO <sub>1</sub> | A in to B out                   |
|                       |                 | SO <sub>2</sub> | B in to A out                   |




| Hydraulic scheme |            |                                            |  |  |
|------------------|------------|--------------------------------------------|--|--|
|                  | A, B       | high pressure ports                        |  |  |
| S1 S2 PS MB B    | S          | charge pump inlet                          |  |  |
|                  | TI,T2      | case drains ports                          |  |  |
|                  | MA, MB, PS | gauge port for<br>system & charge pressure |  |  |
| T2 S MA A        | S1, S2     | servo piston gauge ports                   |  |  |

#### 2.3.5) EP, Electric Proportional control


With the electric proportional control (**EP**) the displacement of the pump is directly proportional to the input current applied to one of the two solenoids. The pump is fitted with a resetting device which automatically reset the control spool to central position if no control takes place. The figure shows the relation between electric current and displacement.

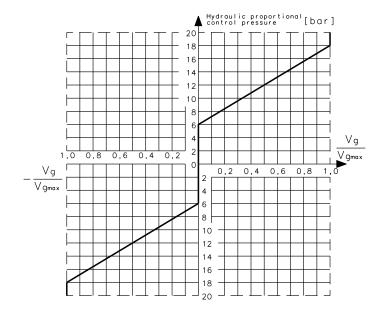
| Solenoid technical data             | EP I      | EP 2      |  |
|-------------------------------------|-----------|-----------|--|
| Voltage                             | 12 (±20%) | 24 (±20%) |  |
| Current of Control                  |           |           |  |
| Start at control at V <sub>g0</sub> | 400 mA    | 200 mA    |  |
| End of control at V <sub>gmax</sub> | 1200 mA   | 600 mA    |  |

Note: the displacement control valve spool can get stuck due to contamination (fluid contamination or abrasion contamination from transmission components). This can result in pump flow different from operator request. Please check if the application require any safety devices (i.e. emergency stop) in order to put the transmission driven output in a safe condition.



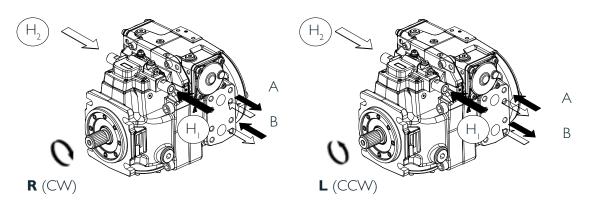
|                       |                 | solenoid        | flow direction through the pump |
|-----------------------|-----------------|-----------------|---------------------------------|
|                       | D (C)A()        | SO              | B in to A out                   |
| Direction of rotation | SO <sub>2</sub> | A in to B out   |                                 |
|                       |                 | SO              | A in to B out                   |
|                       | L (CCVV)        | SO <sub>2</sub> | B in to A out                   |




| Hydraulic scheme |            |                                            |  |
|------------------|------------|--------------------------------------------|--|
|                  | A, B       | high pressure ports                        |  |
| S1 PS, MB, B     | S          | charge pump inlet                          |  |
|                  | Т1,Т2      | case drains ports                          |  |
|                  | MA, MB, PS | gauge port for<br>system & charge pressure |  |
| T2 S MÁ A        | S1, S2     | servo piston gauge ports                   |  |

#### 2.3.6) HP, Hydraulic Proportional Control

With the hydraulic proportional control (HP) the displacement of the pump is directly proportional to the pilot pressure applied to one of the two control pressure ports. The feedback link between swashplate and control ensures the costance of the displacement despite pressure and speed working condition. The pump is fitted with a resetting device which automatically resets the control spool to central position if no control takes place. The figure shows the relation between pressure and displacement.


| Control pressure                    |        |  |  |  |
|-------------------------------------|--------|--|--|--|
| Start at control at V <sub>g0</sub> | 6 bar  |  |  |  |
| End of control at V <sub>gmax</sub> | 18 bar |  |  |  |

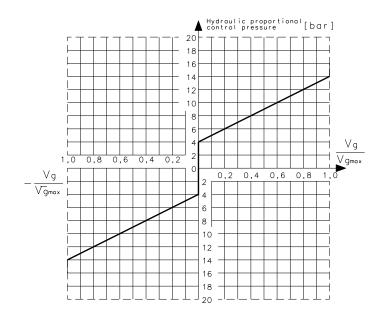
Note: the displacement control valve spool can get stuck due to contamination (fluid contamination or abrasion contamination from transmission components). This can result in pump flow different from operator request. Please check if the application require any safety devices (i.e. emergency stop) in order to put the transmission driven output in a safe condition.



Suggested curves for HPV series Joysticks: CR112 (see HT 73/B/105/0417/E catalogue).

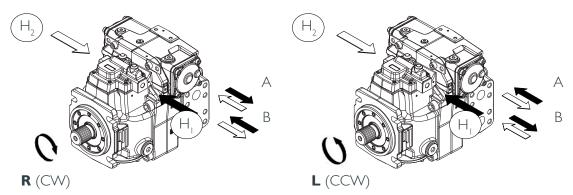
|             |         | Control Pressure Port | flow direction through the pump |  |
|-------------|---------|-----------------------|---------------------------------|--|
|             | R (CW)  | HI                    | B in to A out                   |  |
| Direction   | K (CVV) | H2                    | A in to B out                   |  |
| of rotation |         | HI                    | A in to B out                   |  |
|             | L (CCW) | H2                    | B in to A out                   |  |




| Hydraulic scheme |            |                                            |  |  |
|------------------|------------|--------------------------------------------|--|--|
| H2 H1            | A, B       | high pressure ports                        |  |  |
| S1 S2 PS, MB, B  | S          | charge pump inlet                          |  |  |
|                  | T1,T2      | case drains ports                          |  |  |
|                  | MA, MB, PS | gauge port for<br>system & charge pressure |  |  |
|                  | S1,S2      | servo piston gauge ports                   |  |  |
| T2 S MA A        | H1,H2      | control pressure ports                     |  |  |

#### 2.3.7) HD, Hydraulic Direct Control

HD, Hydraulic Proportional Direct control With the hydraulic proportional direct control (HD, without feedback) the displacement of the pump is directly proportional to the pilot pressure applied directly to one of the two sides of the servo-piston, but is also influenced by load and pump speed. The pump is fitted with a resetting device which automatically reset the swashplate to central position if no control takes place. The figure shows the relation between pressure and displacement.


| Control pressure                    |        |  |  |
|-------------------------------------|--------|--|--|
| Start at control at V <sub>g0</sub> | 4 bar  |  |  |
| End of control at V <sub>gmax</sub> | 14 bar |  |  |

Note: the displacement control valve spool can get stuck due to contamination (fluid contamination or abrasion contamination from transmission components). This can result in pump flow different from operator request. Please check if the application require any safety devices (i.e. emergency stop) in order to put the transmission driven output in a safe condition.



Suggested curves for HPV series Joysticks: CR041 (see HT 73/B/105/0417/E catalogue).

|             |                            | Control Pressure Port | flow direction through the pump |
|-------------|----------------------------|-----------------------|---------------------------------|
|             | D (C)A()                   | HI                    | B in to A out                   |
| Direction   | R (CW)                     | H2                    | A in to B out                   |
| of rotation | of rotation <b>L</b> (CCW) | HI                    | A in to B out                   |
|             |                            | H2                    | B in to A out                   |



| Hydraulic scheme       |            |                                            |  |  |
|------------------------|------------|--------------------------------------------|--|--|
| H2 H1                  | A, B       | high pressure ports                        |  |  |
| SS2 MB B  T2  SS2 MA A | S          | charge pump inlet                          |  |  |
|                        | TI,T2      | case drains ports                          |  |  |
|                        | MA, MB, PS | gauge port for<br>system & charge pressure |  |  |
|                        | S1, S2     | servo piston gauge ports                   |  |  |
|                        | HI,H2      | control pressure port                      |  |  |

# Variable Displacement Closed Loop System Axial Piston Pump

#### 2.3.8) Installation details

#### MS, MZ, MT, MX, MY, RE manual proportional control

Control lever can be assembled in any position allowed by the 12-sided hole of the lever. Lever must be tightened to the control swivel at 35 Nm.

Maximum requested torque to move the lever at its end of stroke is 260 cNm.

A mechanical stop must be provided to prevent damages to the control valve due to excess of torque applied on the lever.

#### NSS Neutral sensor switch

The switch is normally closed (with lever in zero displacement position) and is encapsulated with wire leads Packard Weather Pack connector.

Mating connector: 12010973.

#### BBS Back bell switch:

The switch is normally open (it closes with lever in one of the two displacement side) and is encapsulated with wire leads Packard Metri Pack connector.

Mating connector: 15300027.

#### MY and RE solenoids:

The connector of the solenoid is DEUTSCH DT04-2P-EP04, contact pin 0460-202-16141.

Mating connector: DEUTSCH DT06-2S-EP04.

Refer to EP coils for other characteristics. No PWM is required to energize these coils.

Solenoid nominal power is 18W (both 12V and 24V solenoids) for MY emergency and for RE pause resume function.

Solenoid nominal power is 22W for RE displacement control (both 12V and 24V).

#### EP, Electric Proportional control & E, Electric ON/OFF control

The connector of the solenoid is DEUTSCH DT04-2P-EP04, contact pin 0460-202-16141.

Mating connector: DEUTSCH DT06-2S-EP04 consisting of:

• Case DT06-2S-EP04

Wedge W2S

• Contact-socket 0462-201-16141

The solenoid and the connector allow a protection IP67 and IP69K according to DIN/EN 60529, when mounted with the proper sealing (the solenoid) and the proper mating plug (the connector).

Coil windings utilize Class H magnet wire (180 °C temperature rise above an ambient of 25°C).

Maximum ambient temperature for solenoids: +50°C.

For EP control only: PWM frequency range: 100 Hz.

Solenoid nominal power 23W (both 12V and 24V solenoids).

#### HP, Hydraulic Proportional control (with feedback)

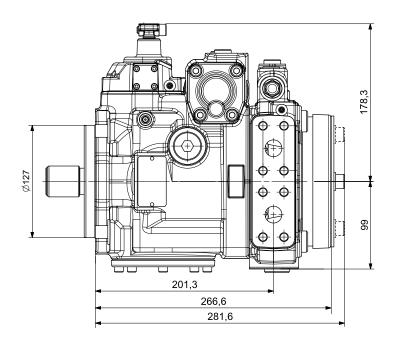
The HP control por ts dimension is G1/4" ISO1179 standard.

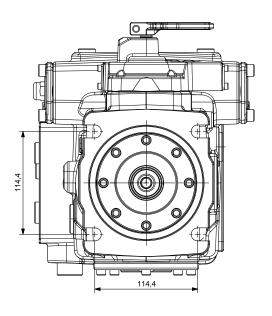
Tighten the connecting nipple at 25 Nm.

Do not pressurize control por t H1 & H2 over 20 bar.

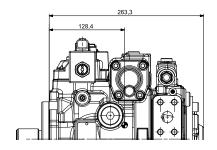
#### HD, Hydraulic Direct control (proportional without feedback)

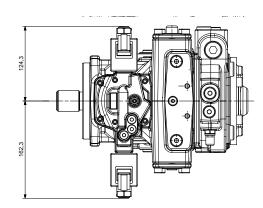
The HD control por ts dimension is G1/4" ISO1179 standard.


Tighten the connecting nipple at 25 Nm.


Do not pressurize control por t H1 & H2 over 35 bar.



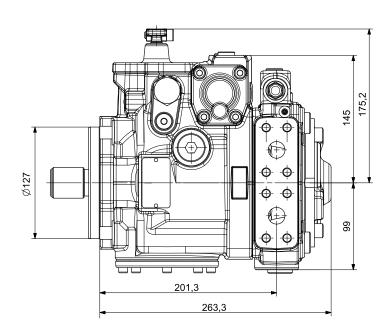

# 2.4) Sizes

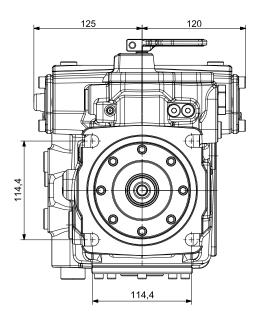

# 2.4.1) TPV 55



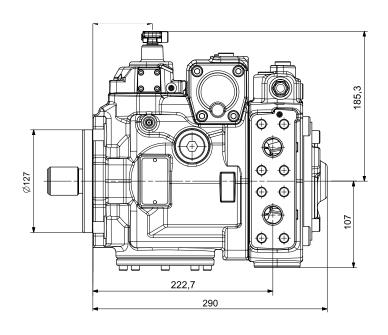


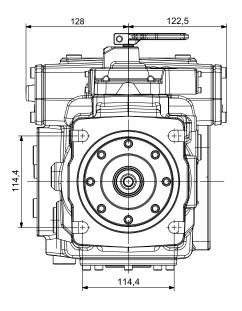
EPI, electric proportional control



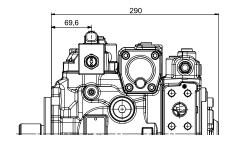



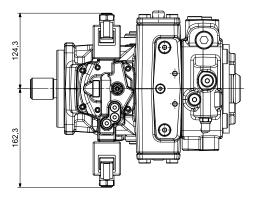




# 2.4.2) TPV 55B

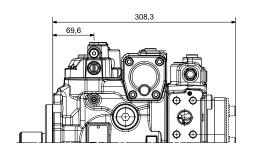

TPV 55B is a special simplified version of TPV 55, available only with MS or MY control, for typical application on transit concrete mixers.

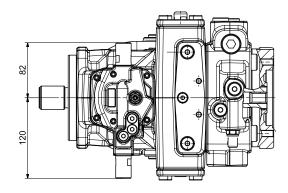






# 2.4.3) TPV 72



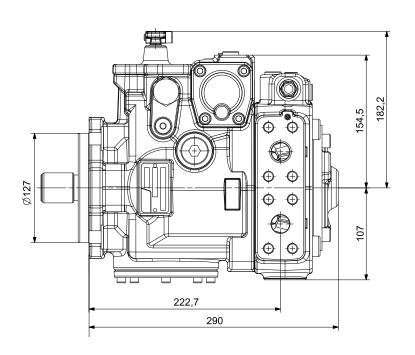


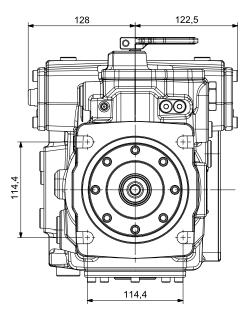


EP, electric proportional control



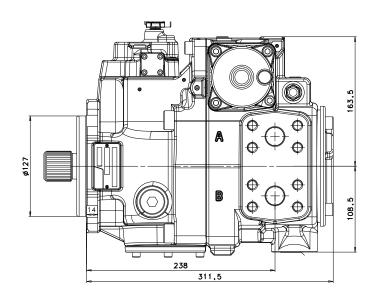


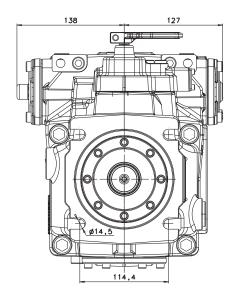
HP, hydraulic proportional control



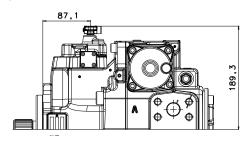



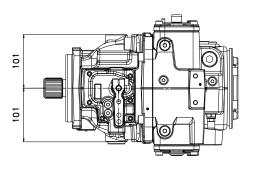




# 2.4.4) TPV 72B

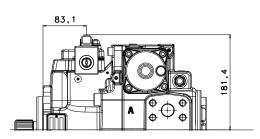

TPV 72B is a special simplified version of TPV 72, available only with MS or MY control, for typical application on transit concrete mixers.

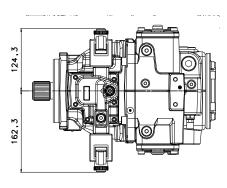




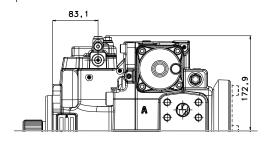


# 2.4.5) TPV 90 / 110

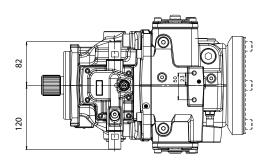




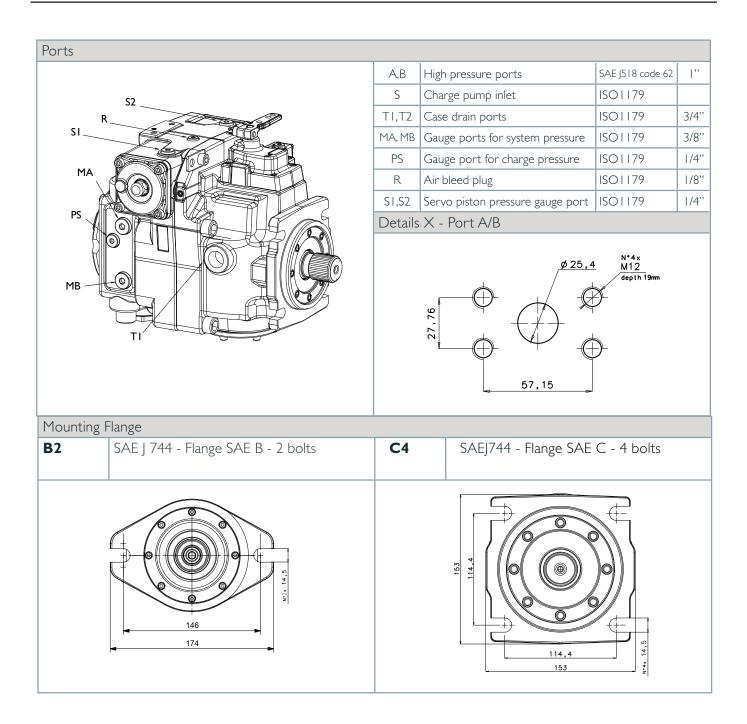


MS, manual control

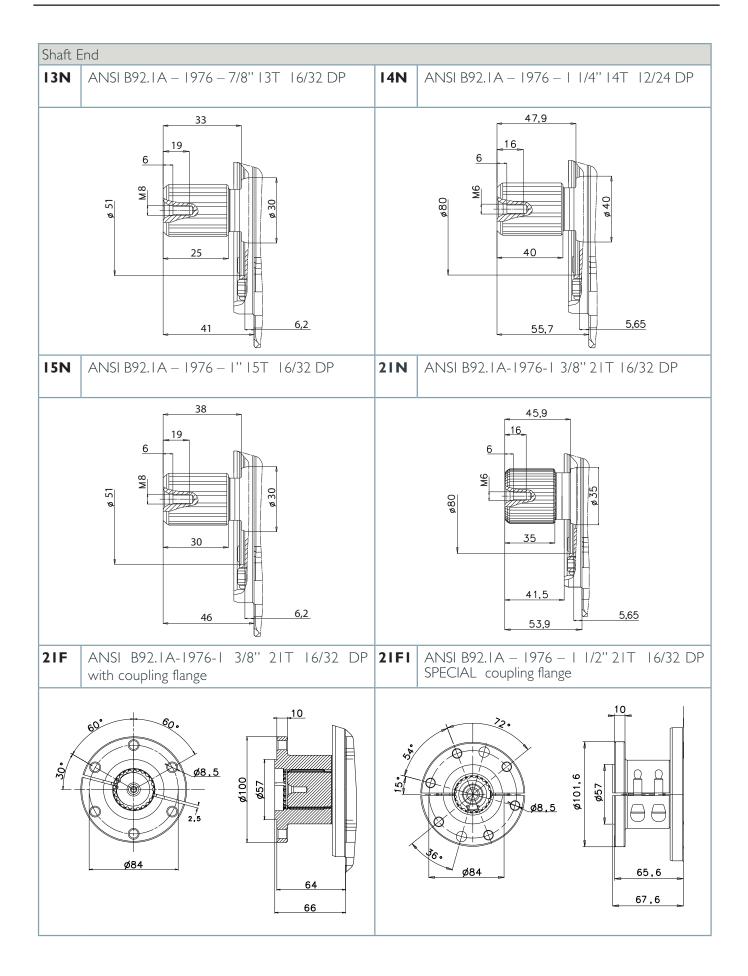


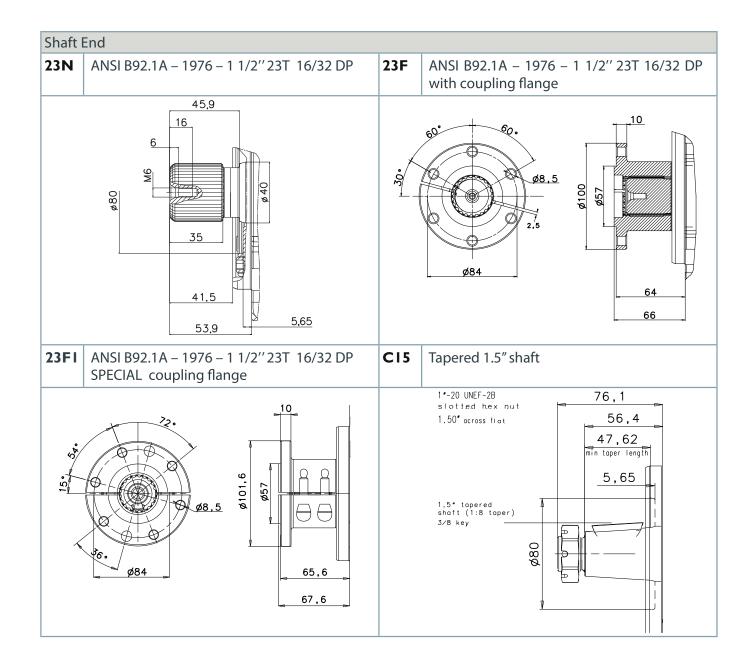




EP, electric proportional control







HP, hydraulic proportional control














| Theoretical maximum torques [Nm] Input shaft for single or tandem pumps (for drive shafts without radial force) |        |        |        |                |
|-----------------------------------------------------------------------------------------------------------------|--------|--------|--------|----------------|
| Input shaft                                                                                                     | TPV 55 | TPV 72 | TPV 90 | <b>TPV 110</b> |
| 13T 16/32 DP                                                                                                    | -      | -      | -      | -              |
| 15T 16/32 DP                                                                                                    | -      | -      | -      | -              |
| 14T 12/24 DP                                                                                                    | 901    | 901    | 901    | 901            |
| 21T 16/32 DP                                                                                                    | 1252   | 1252   | 1167   | 1167           |
| 23T 16/32 DP                                                                                                    | -      | -      | 1450   | 1450           |
| 13T 8/16 DP                                                                                                     | -      | -      | -      | -              |
| 27T 16/32 DP                                                                                                    | -      | -      | -      | -              |

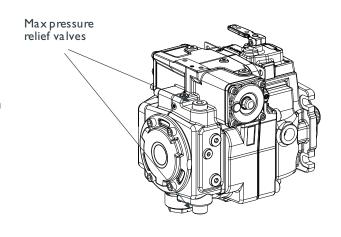
| Theoretical maximum torques [Nm] |        |        |        |                |
|----------------------------------|--------|--------|--------|----------------|
| Internal spline for tandem pumps |        |        |        |                |
| -                                | TPV 55 | TPV 72 | TPV 90 | <b>TPV 110</b> |
| -                                | 333    | _      | 773    | 773            |

| Theoretical maximum torques [Nm]           |     |     |     |     |  |  |
|--------------------------------------------|-----|-----|-----|-----|--|--|
| Through drive TPV 55 TPV 72 TPV 90 TPV 110 |     |     |     |     |  |  |
| SAE A - 9T                                 | 128 | 128 | 128 | 128 |  |  |
| SAE AA - 11T                               | 192 | 192 | 192 | 192 |  |  |
| SAE B - 13T                                | 286 | 311 | 311 | 311 |  |  |
| SAE C - 14T                                | -   | -   | 773 | 773 |  |  |

(TD max)

(TE max)




#### 2.5) Through drive dimensions

| Flange                    |                                 | Splined hub                |                |                |                |                |
|---------------------------|---------------------------------|----------------------------|----------------|----------------|----------------|----------------|
| <b>AI</b> - SAEJ744 82-2  |                                 | ANSI B92.1A-1976 16/32 9T  |                |                |                |                |
|                           | Z <sub>2</sub>                  |                            | Z <sub>1</sub> | $Z_2$          | Z <sub>3</sub> | $Z_4$          |
|                           |                                 | TPV55                      | 272,6          | 10             | 10,3           | 32,3           |
| N°2+2 M10                 | Z <sub>3</sub> C <sub>2</sub>   | TPV72                      | 292,3          | 10             | 10,3           | 32,3           |
| 20 deep                   | Z <sub>4</sub> 88               | TPV90/110                  | 324,8          | 10             | 10,3           | 32,3           |
| <u>\$106,4</u>            | Ø106,4 Z <sub>1 to flange</sub> |                            |                |                |                |                |
| Flange                    |                                 | Splined hub                |                |                |                |                |
| <b>BI</b> - SAEJ744 101-2 |                                 | ANSI B92.1A-1976 16/32 13T |                |                |                |                |
|                           | $Z_2$                           |                            | $Z_1$          | Z <sub>2</sub> | Z <sub>3</sub> | Z <sub>4</sub> |
|                           |                                 | TPV55                      | 272,6          | 10             | 10,3           | 41,3           |
| N°2+2 M12                 | Z <sub>3</sub> (9)              | TPV72                      | 292,3          | 10             | 10,3           | 41,3           |
| 21 deep                   | Z <sub>4</sub> 0                | TPV 90/110                 | 324,8          | 10             | 10,3           | 41,3           |
| Ø146                      | Z <sub>1</sub> to flange        |                            |                |                |                |                |

#### 2.6) High pressure relief valves

The pump is equipped with two relief pressure valves that prevent excessive pressures in the high pressure loop. On a possible peak of pressure, the valve reacts quickly, opens its shutter and limits the pressure at the calibration value. Valves also features anti-cavitation function to compensate the exchanged flow and losses due to leakage.

| Relief valve setting       |                    |  |  |
|----------------------------|--------------------|--|--|
| 420                        | <b>420</b> 420 bar |  |  |
| 350                        | 350 bar            |  |  |
| 300                        | 300 bar            |  |  |
| 250                        | 250 bar            |  |  |
| other settings on requests |                    |  |  |



#### 2.7) Tightening torques

In the following table the you can see the tightening torques for the ports of the pump.

| ,                  | <i>J</i> | · · · · · · · · · · · · · · · · · · · | · · ·       |
|--------------------|----------|---------------------------------------|-------------|
| Port               |          | Thread                                | Torque [Nm] |
| S                  | ISO1179  | 1 1⁄4″                                | 210         |
| T1,T2              | ISO1179  | 3/4"                                  | 65          |
| MA, MB             | ISO1179  | 3/8"                                  | 35          |
| PS, S1, S2, HA, HB | ISO1179  | 1/4″                                  | 25          |



### 3) INSTALLATION INSTRUCTIONS

The pump can be installed in the following position respect to the level of the tank of the hydraulic fluid.

# 3.1) Below tank installation

|                                                                                | Pump Orientation | Notes                                                                                                    |
|--------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------|
| Horizontal shaft<br>Control upwards<br>High Pressure ports<br>(A, B) on side   | Baffle  T1       | The case drain line must be always connected with the drain port positioned in the highest position      |
| Horizontal shaft<br>Control downwards<br>High Pressure ports<br>(A, B) on side | Baffle<br>S<br>S | The case drain line must be always connected with drain port positioned in the highest position          |
| Horizontal shaft<br>Controls on side<br>Pressure ports<br>(A, B) on top        | Baffle T2        | The case drain line must<br>be always connected with<br>drain port positioned in<br>the highest position |

#### 3.2) Start-up procedure

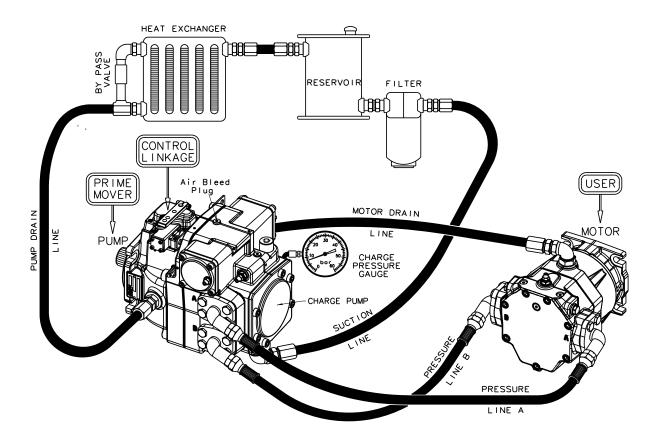
#### 3.2.1) Preliminary indications

In order to avoid an unwanted movement of the User, don't start the Prime Mover (engine) and don't connect the control linkage (lever) until expressly requested by the following procedure.

Use only Mineral Oil with high viscosity index, that can guarantee a viscosity of 16-36 cSt at working temperature. For very short periods a viscosity of 7 cSt at high temperature and of 1600 cSt at cold start are allowable. For other types of oil please contact After Sales Department. Do not use water containing hydraulic oils (HFA, HFB & HFC).

Checkthat hydraulic fluid level (during the commissioning, the operation and after long storing period) is always adequate: case interior, suction line, service line have to be and remain filled with the correct hydraulic fluid to avoid unit malfunctions or damage.

The tank must be fit with the right heat exchanger in order to keep the oil temperature within the required working viscosity range. Temperature limits are  $-25^{\circ}\text{C}$ 


(-13°F) for cold start and 90°C (194°F) for peak temperature; these limit conditions can be maintained only for very short periods. In any case the above viscosities must be fulfilled.

After the tank a filter must be placed (preferably with a clogging sensor), in order to guarantee the right oil cleanliness (b10≥2): for an efficient and lasting working life, a cleanliness of 18/16/13 according to ISO 4406 must be guaranteed. In any case not below 20/18/15 according to ISO 4406.

Pump must be installed below the tank; the tank must be provided with a breather. The breather should not allow for any type of contaminant to enter into the oil tank, including water/moisture. The pressure at charge pump inlet must be always above 0.8 bar.

The hydraulic circuit must be dimensioned in order to have no more than 3 bar continuous pressure and max 6 bar intermittent in the pump and motor case.

# 3.2.2) Hydraulic circuit



#### 3.2.3) Start

During installation and start-up it is very important to keep maximum cleanliness, especially at the hydraulic connections, to avoid any dirt to get into the pump and motor.

- I. Attach the pump to the Prime Mover (engine) and the motor to the User, and tighten the bolts.
- 2. Connect the A/B pressure line and tighten the bolts.
- 3. Fill with fresh and filtered oil the pump case and the motor case, using the drain ports in the highest position; fill the oil till it reaches the same hole used for filling.
- 4. Connect the drain lines according to the sketch above and tighten the bolts.
- 5. Connect the cooler/tank/filter unit at the suction line and tighten the bolts.
- 6. Fill the tank with fresh and filtered oil
- 7. Loosen the suction line where it is connected to the pump. Wait for the oil to fill the hose and then tighten again.
- 8. Check all the connections on the hoses, insuring they are well tightened.
- 9. Remove the PS plug on the side of the charge pump in order to check the charge pressure (see Charge Pressure Gauge on the picture of previous page).
- 10. Install a pressure gauge (0-60 bar / 0-870 PSI) on the PS port (see Charge Pressure Gauge on the picture of previous page).
- 11. Check if the User is free to move.
- 12. Connect the control to the control system of the machine.
- MS / MZ / MY / MT / MX / RE: tighten the control lever screw at 35 Nm  $\,$
- E1.2 / EP1,2 / RE1,2 / MY / Dead Man: connect Deutsch with cables
- $\mbox{HP}$  /  $\mbox{HD}$ : connect the control lines and tighten the nipples.
- 13. Start the prime mover (engine) at 500-800 rpm for around 5-10 seconds and check if charge pump gives pressure, by looking at the Charge Pressure Gauge. It

is possible to unscrew the "Air Bleed Plug", without removing it, in order to make the air bleed freely; when oil appears, tighten the plug.

If the pump is not positioned with the "air bleed plug" at the top, use the highest drain port to perform the bleeding of the air.

- 14. Once the charge pressure signal is properly initiated and air is properly bled, run the engine for about 60 seconds and check the oil level. If oil level is low, stop the engine and fill up to proper level with fresh and filtered oil. Repeat this step until oil level is maintained constant.
- 15. Increase Prime Mover (Engine) speed at 2000 rpm: while keeping the control lever at 0 position (0 displacement) check if the charge pressure gauge shows charge pump pressure setting  $\pm$  1 bar ( $\pm$  15 psi)
- 16. If the pressure is not stable or it is stable at a very different value from charge pump pressure setting  $\pm$  I bar ( $\pm$  15 psi) there could be air inside the circuit: stop the engine, check hoses and connections and start engine again for 40 sec.; if after 2-3 trials the problem is still there please contact technical assistance.
- 17. If the pressure is stable at charge pump pressure setting  $\pm$  1 bar ( $\pm$  15 psi), set the engine speed at its normal working speed. If the engine speed is not in the range 500  $\div$  3.000 rpm contact the technical support.
- 18. Move the control lever slowly away from the 0 position, first at half stroke and then at full stroke in both directions for two or three times: pay attention since this will start moving the Motor and the User will have to be ready to work in safe conditions.

In case of MY control or Dead Man option ensure the relative solenoid is energized otherwise no pressure will reach the control and the servo piston.

- 19. When the hydraulic motor is running the charge pressure should go down by 3-5 bar (40-70 psi) difference; if this is not happening please contact technical assistance.
- 20. Stop the Prime Mover (Engine), remove the pressure gauge from PS port and put back the plug and tighten it.
- 21. Check oil level on the tank and refill if necessary.
- 22. Check that the oil tank is fully closed.
- 23. Check there is no leakage in the circuit.
- 24. The hydraulic system is ready to work.

# PRODUCT GUIDE



# **PUMPS**



Closed Loop Axial Piston Pumps (Variable Displacement) - 6-110 cc

| Model          | Displacement<br>cm³/n.         | Rated<br>Pressure<br>MPa | Peak<br>Pressure<br>MPa | Maximum<br>speed<br>n/min. | Weight kg (single pump) |
|----------------|--------------------------------|--------------------------|-------------------------|----------------------------|-------------------------|
|                | 6, 8, 9, 11, 12, 13            |                          | 30                      |                            |                         |
| TPV 1000       | 15, 17                         | 21                       | 28                      | 3.600                      | 8,8                     |
| TPV 1200 BTB   | 18                             |                          | 27                      |                            | 0,0                     |
|                | 19, 21                         | 20                       | 25                      | 3.200                      |                         |
| TPV-TPVTC 1500 | 17, 18, 19, 21                 | 35                       | 40                      |                            | 14                      |
| TPV 3200       | 21, 28                         | 25                       | 35                      |                            | 22                      |
| TPV-TPVT 3600  | 26, 28, 30, 31, 32, 34, 36, 38 | 35                       | 45                      | 3.600                      | 28                      |
| TPV 4300       | 32, 38, 45, 50                 | 25                       | 35                      |                            | 23                      |
| TPV 5000       | 46, 50, 64                     | 30                       | 40                      |                            | 29                      |
|                | 55                             |                          |                         | 4.000                      | 55                      |
| TPV 9000       | 72                             | 40                       | 45                      | 4.100                      |                         |
|                | 90                             |                          | 43                      | 4.000                      | 68                      |
|                | 110                            |                          |                         | 3.800                      |                         |



Open Loop Axial Piston Pumps (Fixed Displacement) - 32-50 cc

| Model  | Displacement<br>cm³/n. | Rated<br>Pressure<br>MPa | Peak<br>Pressure<br>MPa | Maximum<br>speed<br>n/min. | Weight kg (single pump) |
|--------|------------------------|--------------------------|-------------------------|----------------------------|-------------------------|
| TPF 60 | 35, 40, 46             | 35                       | 42                      | 2.800                      | 20,5                    |
|        | 50                     |                          | 41                      | 2.500                      | 20,3                    |



Bent Axis Pumps - 12-130 cc

| Model                                                         | Displacement<br>cm³/n. | Rated<br>Pressure<br>MPa | Peak<br>Pressure<br>MPa | Maximum<br>speed<br>n/min. | Weight<br>kg |
|---------------------------------------------------------------|------------------------|--------------------------|-------------------------|----------------------------|--------------|
| TPB - TAP 70                                                  | 12.6                   | 35                       | 35 40                   | 3.300                      | 7,5          |
|                                                               | 17.0                   |                          |                         | 3.200                      |              |
|                                                               | 25.4                   |                          |                         | 2.550                      | 8,5          |
|                                                               | 34.2                   |                          |                         | 2.250                      |              |
|                                                               | 41.2, 47.1             |                          |                         | 2.200                      | 15,5         |
|                                                               | 56.0                   |                          |                         | 2.100                      |              |
|                                                               | 63.6                   |                          |                         | 2.050                      |              |
|                                                               | 83.6, 90.7, 108.0      |                          |                         | 1.700                      | 27,0         |
|                                                               | 130.0                  |                          |                         | 1.600                      | 29,5         |
| The table values can change in function of the configuration. |                        |                          |                         |                            |              |



As HANSA-TMP has a very extensive range of products and some products have a variety of applications, the information supplied may often only apply to specific situations.

If the catalogue does not supply all the information required, please contact HANSA-TMP.

In order to provide a comprehensive reply to queries we may require specific data regarding the proposed application.

Whilst every reasonable endeavour has been made to ensure accuracy, this publication cannot be considered to represent part of any contract, whether expressed or implied.

The data is this catalogue refer to the standard product. The policy of HANSA-TMP consists of a continuous improvement of its products. It reserves the right to change the specifications of the different products whenever necessary and without giving prior information.

