

HYDRAULIC COMPONENTS
HYDROSTATIC TRANSMISSIONS
GEARBOXES - ACCESSORIES

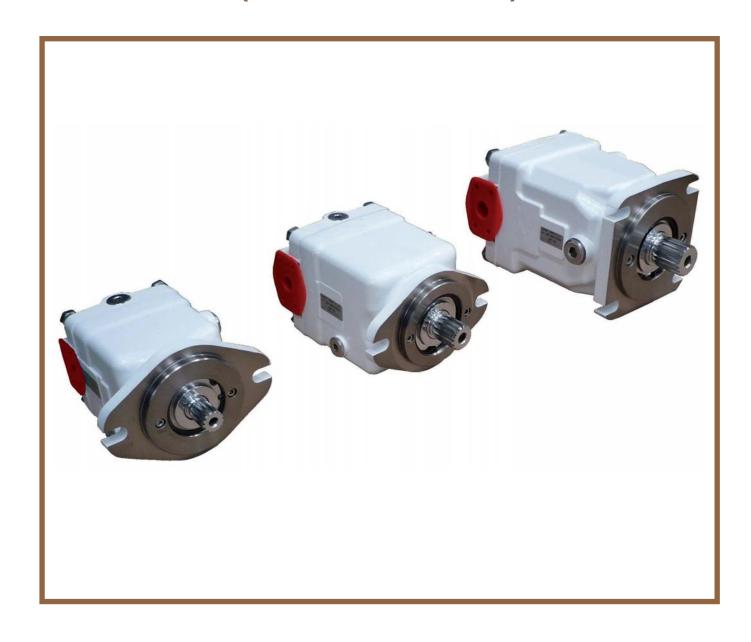
Certified Company ISO 9001 - 14001

Via M. L. King, 6 - 41122 MODENA (ITALY)

Tel: +39 059 415 711

Fax: +39 059 415 729 / 059 415 730

INTERNET: http://www.hansatmp.it

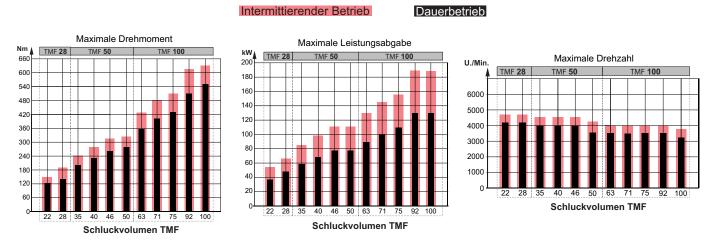

E-MAIL: hansatmp@hansatmp.it

HT 16 / M / 3011 / 0717 / D

DIE FERTIGUNG VON HANSA-TMP

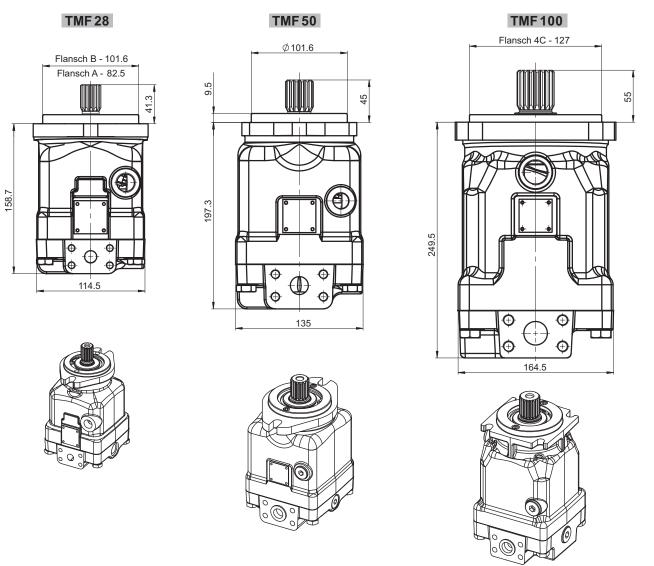
Konstant-Axialkolbenmotore für offene oder geschlossene Kreise

TMF 600 (22 ÷ 100 cm³/U.)



INHALT

Technische Eigenschaften	
Hauptabmessungen	
Vorteile / Übersicht: Anbauflansche, Wellen, Ölanschlüsse	5
Baugrösse TMF 28	
Allgemeine Informationen	6
Schnittzeichnung	
Funktionsdaten	
Funktionsdiagramme	9
Abmessungen und Ölanschlüsse (Ausführungen SAE-A)	10
Antriebswellen (SAE-A)	11
Abmessungen und Ölanschlüsse (Ausführungen SAE-B)	
Antriebswellen (SAE-B)	
Ventil-Optionen	15
venui-Optionen	10
Baugrösse TMF 50	
Allgemeine Informationen	16
Schnittzeichnung	
Funktionsdaten	
Funktionsdiagramme	19
Abmessungen und Ölanschlüsse	20
Antriebswellen	
Bestellschlüssel	
Ventil-Optionen	23
Baugrösse TMF 100	
Allgemeine Informationen	24
Schnittzeichnung	25
Funktionsdaten	
Funktionsdiagramme	27
Abmessungen und Ölanschlüsse (Ausführungen SAE-4C)	
Antriebswellen (SAE-4C)	29
Bestellschlüssel	
Ventil-Optionen	31
Wellenausführungen	32 - 3
Einbauhinweise	
Hinweise zur Druckflüssigkeit	
Berechnungsformeln	38



FUNKTIONSDATEN HYDRAULIKMOTOREN BAUSERIE TMF

HAUPTABMESSUNGEN DER MOTOREN

Die Angaben sind richtungsweisend; die Motoren können mit verschiedenen Anbauflanschen, Antriebswellen und Enddeckeln geliefert werden.

Konstant-Axialkolbenmotore

Vorteile der TMF-Motoren

- 1. Gehärtete Wellen, geeignet für lange Standfestigkeit bei normaler und stossartiger Belastung.
- 2. Starke Axial-Radial-Wellenlagerung für hohe axiale und radiale Wellenbelastungen.
- 3. Robuste Schrägscheibe.
- 4. Druckplatte zur Halterung der Kolben ohne Vorspannung, ermöglicht hohe Anlaufmomente.
- 5. Kolbenschuhe mit grossem Durchmesser, für erhöhte Lebensdauer.
- 6. Verstärkte Kolben von grosser Länge und vergrössertem Nacken, für hohe Arbeitsdrücke.
- 7. Messingbuchsen mit geringer Reibung, für kontrollierte Wärmebildung auch bei hohem Druck und hoher Drehzahl.
- 8. Gehärteter Kolbenblock für hohe Belastbarkeit.
- 9. Bimetall Steuerplatte für begrenzte Reibung und hohe Belastbarkeit.
- 10. Nadellager geeignet für die Aufnahme radialer Belastungen.
- 11. Solider Enddeckel für hohe Druckbelastungen.

Der besondere Vorzug dieser Konstruktion ist, dass die genauesten Fertigungstolleranzen den Verzicht auf dauernde Vorspannung der Elemente erlauben. Dadurch ergibt sich eine geringere Wärmeentwicklung bei gleichzeitig hohem Anlaufmoment. Die Messingbuchsen und die Bimetall-Steuerplatte reduzieren ebenfalls die Reibung und ermöglichen hohe Drehzahlen bei geringer Wärmebildung. Dies resultiert in besonders hoher Standfestigkeit dieser Motoren. Auch die Formgebung der Kolben und der Kolbenschuhe ist besonders, um eine lange Lebensdauer zu garantieren.

Diese Besonderheiten der TMF-Motoren bieten erhebliche Vorteile gegenüber sonst typischen Schrägscheiben-Motoren. Das Anlaufmoment ist ähnlich wie bei Schrägachsen-Motoren und die Wirkungsgrade sind praktisch gleich. Gleichzeitig erzeugen diese Motoren weniger Schwingungen und Pulsierungen im System. Ausserdem ist die Lebensdauer dieser Motoren höher als die von Schrägachsen-Motoren.

Übersicht der lieferbaren Anbauflansche, Wellen und Ölanschlüsse

Übersicht Anbauflansche

TMF 28	TMF 50	TMF 100		Flanschausführungen
Х			Α	-2-Loch-Flansch SAE-A, SD. 82.5, BC. 106.35, BD 13.5
х	х		В	-2-Loch-Flansch SAE-B, SD. 101.6, BC. 146, BD 14.3
		X	4C	- 4-Loch-Flansch SAE-C, SD. 127, BC. 161.92, BD. 14.3

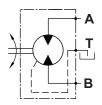
Legende

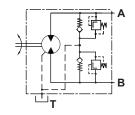
BC = Abstand der Befestigungsbohrungen

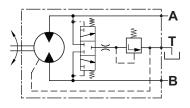
BD = Durchmesser der Befestigungsbohrungen

SD = Zentrierdurchmesser

Übersicht Wellenausführungen


TMF28	TMF50	TMF100	Wellenausführungen
X	Х		SD ø21.72 Vielkeil SAE Z13 - 16/32 DP, mit Bohrung M8-6H
X	X		SF ø24.9 Vielkeil SAE Z15 - 16/32 DP, mit Bohrung M8-6H
	X		SK ø31.75 Vielkeil SAE Z14 - 12/24 DP, mit Bohrung M10-6H
			SP ø34.5 Vielkeil SAE Z21 - 16/32 DP, mit Bohrung M12-6H
X	Х		CK ø22.2 Zylindrisch mit Passfeder 1/4"x1/4"x1" BS46 und Bohrung M8-6H
X			ML ø25 Zylindrisch mit Passfeder A8x7x25 DIN6885 und Bohrung M8-6H
X	X		CM ø25.4 Zylindrisch mit Passfeder 1/4"x1/4"x1" BS46 und Bohrung M8-6H
	X		CQ ø30 Zylindrisch mit Passfeder A8x7x25 DIN6885 und Bohrung M8-6H
	X		CS ø32 Zylindrisch mit Passfeder A10x8x45 DIN6885 und Bohrung M8-6H
			DU ø38.1 Zylindrisch mit Passfeder 3/4"x3/4"x1.1/2" mit Gewindebohrung 3/8"-16 UNC-2B
		Х	CV ø40 Zylindrisch mit Passfeder A12x8x63 DIN6885 und Bohrung M12-6H


Übersicht Ölanschlüsse


Anschlus	Anschluss-Abmessungen - Gewindeausführung						
TMF28	TMF50	TMF100	Gewindeausführungen				
6	2		2xG3/4", Leckanschlüsse G1/2"				
		2	2xG1", Leckanschlüsse G3/4", Leckanschluss hinten G1/2"				

Hydraulikmotoren Baugrösse TMF 28

Hochleistungs-Konstantaxialkolbenmotoren

Der Leckanschluss muss immer genutzt werden.

ANWENDUNGEN

Landmaschinen

Strassenbaumaschinen

Bergwerksmaschinen

Nahrungsmittel-Industrie

Schwenkantriebe

Hydrostatische Fahrantriebe

Verdichter

Lüfterantriebe

Sondermaschinenbau

MERKMALE

Schrägscheibe

Verschiedene Wellenausführungen

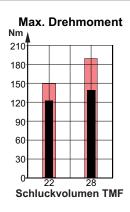
Verschiedene Ölanschlussvarianten

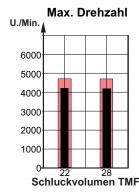
Hochdruckanschlüsse

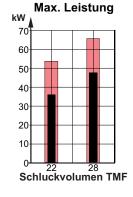
Integrierte Ventile

VORTEILE

Hohes Anlaufmoment

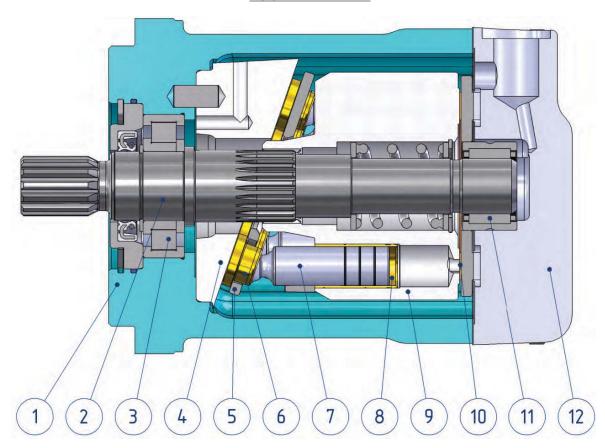

Schwingungsfreier Betrieb


Hohe Lebensdauer


Grosse Leistungsdichte

HAUPTDATEN

Schluckvolumen	cm³/U.	22,15÷28.47
Max. Drehzahl	U./Min.	4200
Max. Drehmoment	Nm	159
Max. Leistung	kW	48
Max. Druckbeaufschlagung	bar	350
Max. Ölzufuhr	L/Min.	120
Mindest-Drehzahl	U./Min.	500
Druckflüssigkeit		Mineralöl HLP (DIN 51524) oder HM (ISO 6743/4)
Temperaturbereich	°C	-40÷82
Optimale Ölviskosität	mm²/s	12÷68
Filtrierung		ISO Kode 18/16/13 (empfohlene Mindest-Filterfeinheit 10 My)



Intermittierend

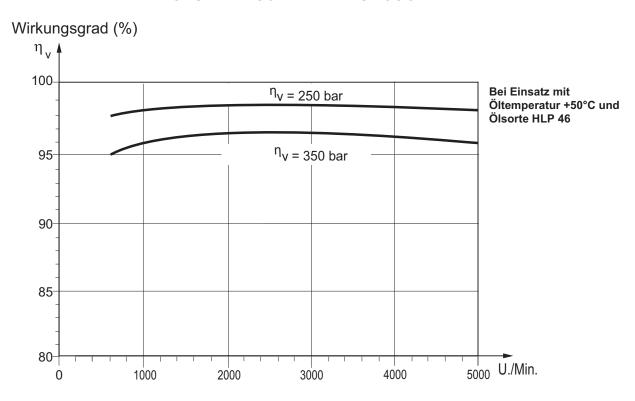
im Dauerbetrieb

SCHNITTBILD

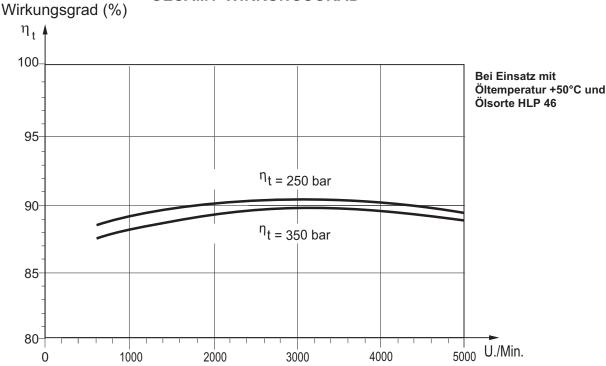
- 1. Gussgehäuse
- 2. Gehärtete Welle
- 3. Robustes Axial-Radial-Lager
- 4. Einteilige Schrägscheibe
- 5. Druckplatte
- 6. Grosse Kolbenschuhe
- 7. Grosse Kolben
- 8. Messingbuchsen
- 9. Gehärteter Kolbenblock
- 10. Bimetall-Steuerscheibe
- 11. Nadellager
- 12. Einteiliger Enddeckel

Die Hochleistungsausführung der TMF-Motoren bietet viele Vorteile im Vergleich zu typischen Schrägscheiben-Motoren. Das Anlaufmoment und der Gesamt-Wirkungsgrad sind vergleichbar mit den Werten von Schrägachsen-Motoren. Der Hauptvorteil der TMF-Motoren gegenüber Schrägachsen-Motoren ist der Betrieb ohne Pulsierungen und Schwingungen. Zudem sind die TMF-Motoren bewiesenermassen zuverlässiger.

FUNKTIONSDATEN

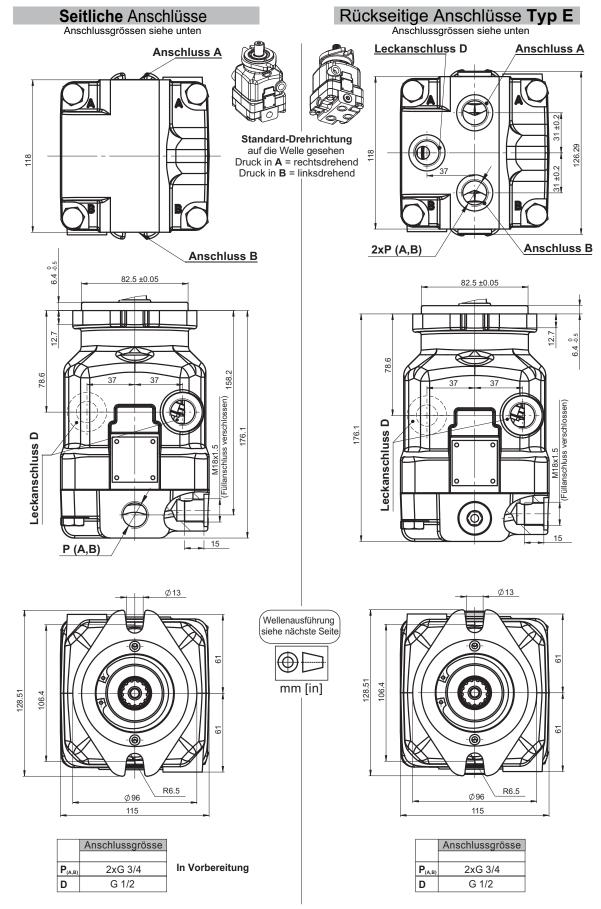

Modell		TMF 22	TMF 28
Schluckvolumen cm³/U.		22.15	28.47
Max. Drehzahl	Dauer	4200	4200
U./Min.	Int.*	4700	4700
Max. Drehmoment ***	Dauer	123	159
Nm	Int.**	148	190
Leistung	Dauer	37	48
kW	Int.**	54	70
Max. Druck	Dauer	350	350
bar	Int.**	420	420
Max. Öldurchfluss	Dauer	93	120
L./Min.	Int.*	104	134
Wellenbelastung			
Axial max. ****	N	Fa=1	1300
Radial max. ****	N	Fr=2	200
Mindest-Drehzahl U.	500		
Max. Druck in Leckölleitung bar		schluss muss utzt werden	
Gewicht Kg		11	.3

- * Intermittierende Drehzahl (Öldurchfluss) für Druck bis 150 bar;
- ** Intermittierende Belastung, gilt für max. 10% pro Minute;
- *** Theoretisches Drehmoment;
- **** Diese Angaben beziehen sich auf die optimalen Lastangriffspunkte Fr und Fa auf der Welle.
- 1. Im Dauerbetrieb soll die empfohlene Leistung nicht überschritten werden.
- 2. Empfohlene Filtrierung nach ISO 4406 und Reinheitskode 18/16/13 oder besser. Diese Filtrierung entspricht SAE AS 4059 8A/78/7C. Nominal 10 My oder besser.
- 3. Empfohlen ist ein hochwertiges Mineralöl HLP (DIN 51524) oder HM (ISO 6743/4).
- 4. Empfohlener Viskositätsbereich: 12 68 cSt (siehe auch Seite 37).
- 5. Maximal empfohlene Systemtemperatur = 82°C
- **6.** Zum Schutz des Motors muss dieser vor der Inbetriebnahme mit Hydrauliköl gefüllt werden; danach mit geringer Belastung und Drehzahl für ca. 10-15 Minuten einlaufen lassen.

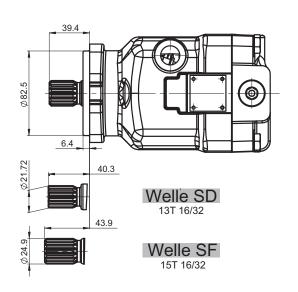

FUNKTIONSDIAGRAMME

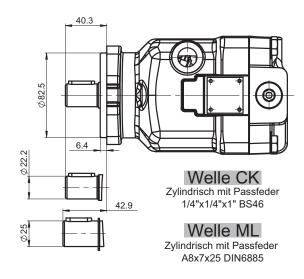
Die Wirkungsgradkurven gelten für alle Baugrössen.

VOLUMETRISCHER WIRKUNGSGRAD


GESAMT-WIRKUNGSGRAD

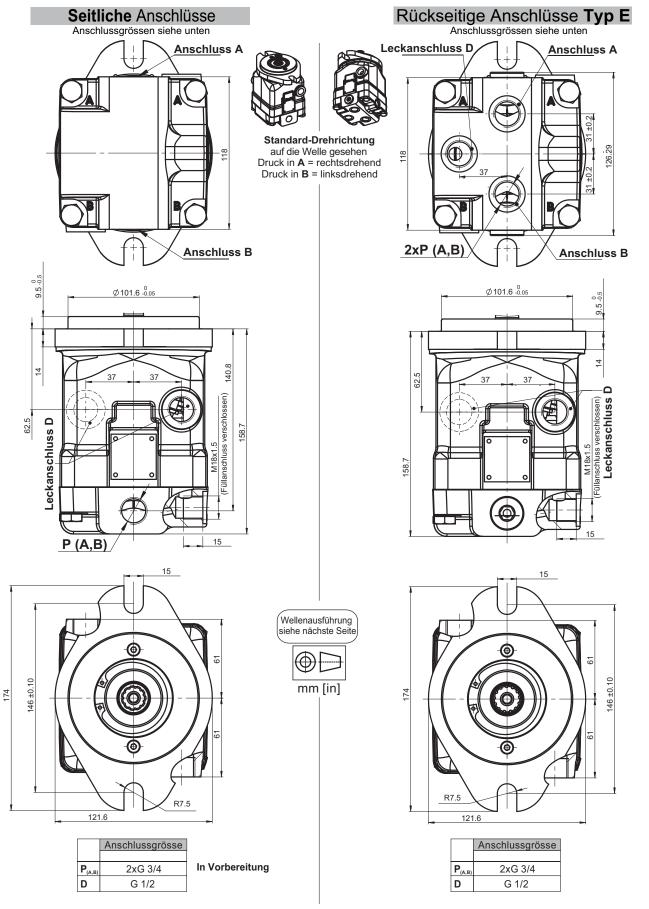
Die Motorbaugrösse kann bzgl. Druck, Drehmoment, Drehzahl und Durchflussleistung mit den auf Seite 38 angegebenen Formeln bestimmt werden.


Die Wirkungsgrade können aufgrund unterschiedlicher Einsatzbedingungen variieren.


Hauptabmessungen und Ölanschlüsse Seitliche Anschlüsse - **Standard** - Anbauflansch **SAE-A**

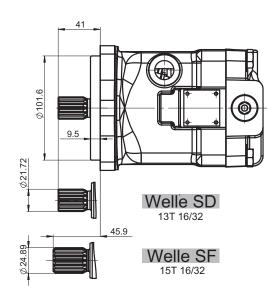
Wellenausführungen Anbauflansch **SAE-A**

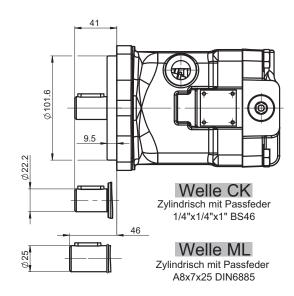
Wellenabmessungen siehe Seiten 32÷33


ZULÄSSIGE WELLENBELASTUNG

Zulässige Well		
Axial max.	N	Fa=1300
Radial max.	N	Fr=2200

Die Maximalwerte gelten für die bestmöglichen Lastangriffspunkte und Wellenposition (siehe Seite 34).


Hauptabmessungen und Ölanschlüsse


Seitliche Anschlüsse - Standard - Anbauflansch SAE-B

Wellenausführungen Anbauflansch **SAE-B**

Wellenabmessungen siehe Seiten 32÷33

ZULÄSSIGE WELLENBELASTUNG

Zulässige Welle		
Axial max.	N	Fa=1300
Radial max.	N	Fr=2200

Die Maximalwerte gelten für die bestmöglichen Lastangriffspunkte und Wellenposition (siehe Seite 34).

BESTELLSCHLÜSSEL

	1	2	3	4	5	6	7	8	9	10
TMF										

Pos.1	- An	baufla	ansch
-------	------	--------	-------

- SAE-A 2-Loch-Flansch, Zentrierung Durchm. 82,5 mm, Lochabstand 106,35 mm für Schrauben Durchm. 13,5 mm

 SAE-B 2-Loch-Flansch, Zentrierung Durchm.
 101,6 mm, Lochabstand 146 mm für Schrauben Durchm. 14,3 mm

Pos.2 - Ausführung Ölanschlüsse

o. A. - gegenüberliegende seitliche Anschlüsse (in Vorbereitung)

E - rückseitige Anschlüsse

Pos.8 - Ventile

Siehe Informationen auf nächster Seite

o. A. - ohne Ventil

FLU - Spülventil

DAR - Doppel-Nachsaug- und Druckbegrenzungsventil (nicht lieferbar für Option E von Pos. 2)

Pos.9 - Druckeinstellung des Ventils

o. A. - ohne

x - Druck - siehe nächste Seite

Pos.3 - Schluckvolumen

22 - 22,15 cm³/U.

28 - 28,47 cm³/U.

Pos.10 - Ausspülmenge des Ventils

o. A. - ohne

Lx - Ausspülmenge - siehe nächste Seite

Pos.4 - Wellenausführungen *

SD - ø 21,72 Vielkeil SAE-B Z13-16/32 DP, mit Bohrung M8-6H

SF - ø 24,9 Vielkeil SAE-BB Z15-16/32 DP, mit Bohrung M8-6H

CK - Ø 22,2 zylindrisch mit Bohrung M8-6H, Passfeder 1/4" x 1/4" x 1" BS46

ML - ø 25 zylindrisch mit Bohrung M8-6H, Passfeder A8 x 7 x 25 DIN 6885

Pos.5 - Wellenlagerung

o. A. - Standard-Lagerung

N - verstärkte Lagerung

Pos.6 - Ölanschlüsse

2 - 2 x G1/2", Leckanschlüsse G1/2"

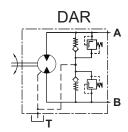
6 - 2 x G3/4", Leckanschlüsse G1/2"

Pos.7 - Dichtungsmaterial

o. A. - NBR

V - FKM (Viton)

^{*} Die zulässige Wellenbelastung darf nicht überschritten werden!

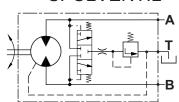

VENTILE

Die Motorabmessungen ändern sich im Vergleich zu den Standardmotoren.

Ventil **DAR**

kombiniertes Doppel-Nachsaug- und Druckbegrenzungsventil

- Die Nachsaugventile sind beim Einsatz als Ventilatorantrieb empfohlen.
- Die Druckbegrenzungsventile schützen den Motor vor Überlastung.


Bitte nachstehende Einstellungen beachten:
Pos.8 250 300 350 Bar Druck

BEISPIEL

TMF B28SD2**DAR350**

Doppel-Nachsaug- und Druckbegrenzungsventil, Einstellung 350 Bar

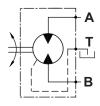
Ventil **FLU** SPÜLVENTIL

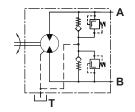
- Verwendung besonders im geschlossenen Kreis: Standardausspülung (ohne Angabe) = 3 bis 7 L/Min. und Öffungsdruck 16 Bar bei 20 Bar Speisedruck im geschlossenen Kreis
- Für andere Werte bei Pos. 8 und Pos. 9 folgende Angaben wählen:

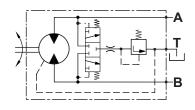
Pos.8 ohne 10 Druck
Pos.9 ohne L3.5 L5.5 Ausspülmenge

BEISPIELE

 $\begin{tabular}{lll} T\ M\ F \ B\ 2\ 8\ S\ D\ 2\ F\ L\ U \ & Ausspülmenge\ 5\pm 2\ L/Min.,\\ \hline Offnungsdruck\ 16\ Bar \end{tabular}$


TMFB28SD2**FLU10L5.5** Ausspülmenge 5.5±1 L/Min. Öffnungsdruck 10 Bar


TMF B28SD2**FLUL3.5** Ausspülmenge 3.5±1 L/Min. Öffnungsdruck 16 Bar



Hydraulikmotoren Baugrösse TMF 50

Hochleistungs-Konstantaxialkolbenmotoren

Der Leckanschluss muss immer genutzt werden.

ANWENDUNGEN

Landmaschinen

Strassenbaumaschinen

Bergwerksmaschinen

Nahrungsmittel-Industrie

Schwenkantriebe

Hydrostatische Fahrantriebe

Verdichter

Lüfterantriebe

Sondermaschinenbau

MERKMALE

Schrägscheibe

Verschiedene Ölanschlussvarianten

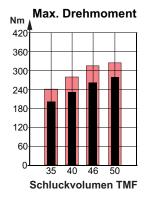
Verschiedene Wellenausführungen

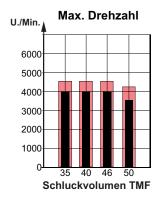
Hochdruckanschlüsse

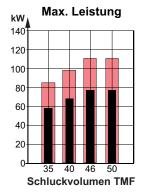
Integrierte Ventile

VORTEILE

Hohes Anlaufmoment

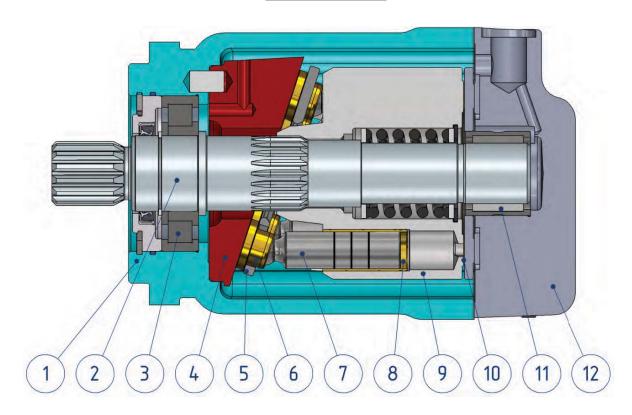

Schwingungsfreier Betrieb


Hohe Lebensdauer


Grosse Leistungsdichte

HAUPTDATEN

Schluckvolumen	cm³/U.	36,16÷49.94
Max. Drehzahl	U./Min.	4000
Max. Drehmoment	Nm	278
Max. Leistung	kW	76
Max. Druckbeaufschlagung	bar	350
Max. Ölzufuhr	L/Min.	180
Mindest-Drehzahl	U./Min.	500
Druckflüssigkeit		Mineralöl HLP (DIN 51524) oder HM (ISO 6743/4)
Temperaturbereich	°C	-40÷82
Optimale Ölviskosität	mm²/s	12÷68
Filtrierung		ISO Kode 18/16/13 (empfohlene Mindest-Filterfeinheit 10 My)



Intermittierend

im Dauerbetrieb

SCHNITTBILD

- 1. Gussgehäuse
- 2. Gehärtete Welle
- 3. Robustes Axial-Radial-Lager
- 4. Einteilige Schrägscheibe
- 5. Druckplatte
- 6. Grosse Kolbenschuhe
- 7. Grosse Kolben
- 8. Messingbuchsen
- 9. Gehärteter Kolbenblock
- 10. Bimetall-Steuerscheibe
- 11. Nadellager
- 12. Einteiliger Enddeckel

Die Hochleistungsausführung der TMF-Motoren bietet viele Vorteile im Vergleich zu typischen Schrägscheiben-Motoren. Das Anlaufmoment und der Gesamt-Wirkungsgrad sind vergleichbar mit den Werten von Schrägachsen-Motoren. Der Hauptvorteil der TMF-Motoren gegenüber Schrägachsen-Motoren ist der Betrieb ohne Pulsierungen und Schwingungen. Zudem sind die TMF-Motoren bewiesenermassen zuverlässiger.

FUNKTIONSDATEN

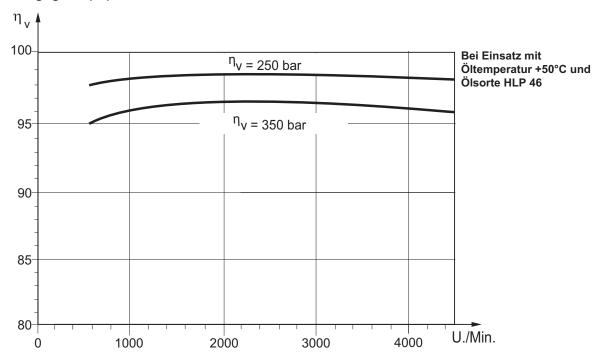
Modell		TMF 35	TMF 40	TMF 46	TMF 50
Schluckvolumen cm³/U.		36.16	41.59	47.13	49.94
Max. Drehzahl	Dauer	4000	4000	4000	3600
U./Min.	Int.*	4500	4500	4500	4200
Max. Drehmoment ***	Dauer	202	232	263	278
Nm	Int.**	242	278	315	326
Leistung	Dauer	58	67	76	76
kW	Int.**	84	97	110	110
Max. Druck	Dauer	350	350	350	350
bar	Int.**	420	420	420	410
Max. Öldurchfluss	Dauer	145	167	189	180
L./Min.	Int.*	163	187	212	210
Wellenbelastung					
Axial max. ****	N		Fa=2	2000	
Radial max. ****	N		Fr=3	600	
Mindest-Drehzahl U.	500				
Max. Druck in Leckölleitung bar		5 Der Leckanschluss muss immer genutzt werde			
Gewicht Kg			17.	8	

^{*} Intermittierende Drehzahl (Öldurchfluss) für Druck bis 150 bar;

- 1. Im Dauerbetrieb soll die empfohlene Leistung nicht überschritten werden.
- **2.** Empfohlene Filtrierung nach ISO 4406 und Reinheitskode 18/16/13 oder besser. Diese Filtrierung entspricht SAE AS 4059 8A/78/7C. Nominal 10 My oder besser.
- 3. Empfohlen ist ein hochwertiges Mineralöl HLP (DIN 51524) oder HM (ISO 6743/4).
- 4. Empfohlener Viskositätsbereich: 12 68 cSt (siehe auch Seite 37).
- 5. Maximal empfohlene Systemtemperatur = 82°C
- **6.** Zum Schutz des Motors muss dieser vor der Inbetriebnahme mit Hydrauliköl gefüllt werden; danach mit geringer Belastung und Drehzahl für ca. 10-15 Minuten einlaufen lassen.

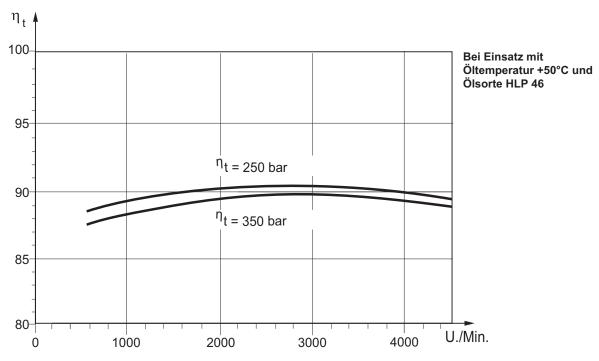
^{**} Intermittierende Belastung, gilt für max. 10% pro Minute;

^{***} Theoretisches Drehmoment;


^{****} Diese Angaben beziehen sich auf die optimalen Lastangriffspunkte Fr und Fa auf der Welle.

FUNKTIONSDIAGRAMME

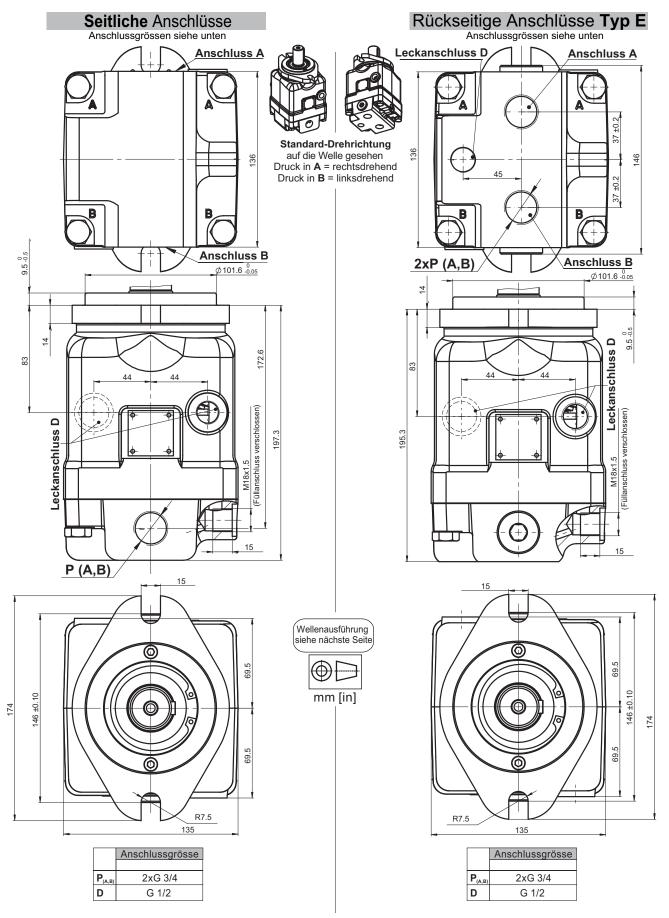
Die Wirkungsgradkurven gelten für alle Baugrössen.


VOLUMETRISCHER WIRKUNGSGRAD

Wirkungsgrad (%)

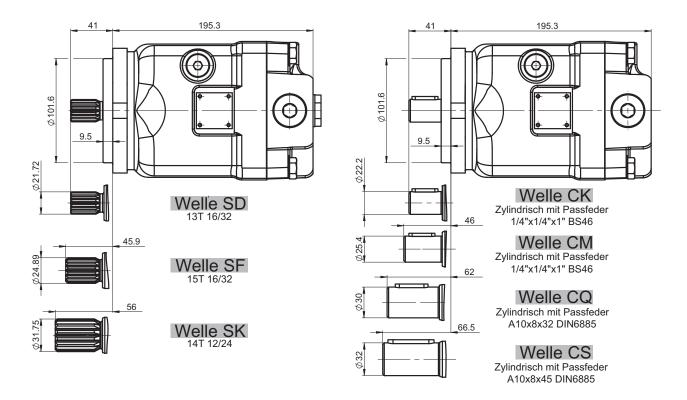
GESAMT-WIRKUNGSGRAD

Wirkungsgrad (%)



Die Motorbaugrösse kann bzgl. Druck, Drehmoment, Drehzahl und Durchflussleistung mit den auf Seite 38 angegebenen Formeln bestimmt werden.

Die Wirkungsgrade können aufgrund unterschiedlicher Einsatzbedingungen variieren.



Hauptabmessungen und Ölanschlüsse

Wellenausführungen

Wellenabmessungen siehe Seiten 32÷33

ZULÄSSIGE WELLENBELASTUNG

Zulässige Welle		
Axial max.	N	Fa=2000
Radial max.	N	Fr=3600

Die Maximalwerte gelten für die bestmöglichen Lastangriffspunkte und Wellenposition (siehe Seite 34).

BESTELLSCHLÜSSEL

	1	2	3	4	5	6	7	8	9
TMF									

Pos.1	- Anbautiansch

SAE-B 2-Loch-Flansch, Zentrierung Durchm.
 101,6 mm, Lochabstand 146 mm

Pos.6 - Dichtungsmaterial

o. A. - NBR

V - FKM (Viton)

Pos.2 - Ausführung Ölanschlüsse

o. A. - gegenüberliegende seitliche Anschlüsse

E - rückseitige Anschlüsse

Pos.7 - Ventile

Siehe Informationen auf nächster Seite

DAR - Doppel-Nachsaug- und Druckbegrenzungsventil

(nicht lieferbar für Option E von Pos. 2)

o. A. - ohne Ventil

FLU - Spülventil

Pos.3 - Schluckvolumen

35 - 36,16 cm³/U.

40 - 41,59 cm³/U.

46 - 47,13 cm³/U.

50 - 49,94 cm³/U.

Pos.8 - Druckeinstellung des Ventils

o. A. - ohne

x - Druck - siehe nächste Seite

Pos.4 - Wellenausführungen *

SD - ø 21,72 Vielkeil SAE-B Z13-16/32 DP, mit Bohrung M8-6H

SF - ø 24,9 Vielkeil SAE-BB Z15-16/32 DP, mit Bohrung M8-6H

SK - ø 31,75 Vielkeil SAE-C Z14-12/24 DP, mit Bohrung M10

CK - ø 22,2 zylindrisch mit Bohrung M8-6H, Passfeder 1/4" x 1/4" x 1" BS46

CM - ø 25,4 zylindrisch mit Bohrung M8-6H, Passfeder 1/4" x 1/4" x 1" BS46

CQ - ø 30 zylindrisch mit Bohrung M8-6H, Passfeder A8 x 7 x 32 DIN6885

CS - ø 32 zylindrisch mit Bohrung M8-6H, Passfeder A10 x 8 x 45 DIN6885

* Die zulässige Wellenbelastung darf nicht überschritten werden!

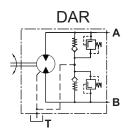
Pos.9 - Ausspülmenge des Ventils

o. A. - ohne

- Ausspülmenge - siehe nächste Seite

Pos.5 - Ölanschlüsse

2 - 2 x G3/4", Leckanschlüsse G1/2"


VENTILE

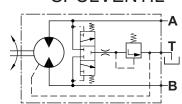
Die Motorabmessungen ändern sich im Vergleich zu den Standardmotoren.

Ventil DAR

kombiniertes Doppel-Nachsaug- und Druckbegrenzungsventil

- Die Nachsaugventile sind beim Einsatz als Ventilatorantrieb empfohlen.
- Die Druckbegrenzungsventile schützen den Motor vor Überlastung.

Bitte nachstehende Einstellungen beachten:


Pos.8 250 300 350 Bar Druck

BEISPIEL

TMF B46SH2DAR350

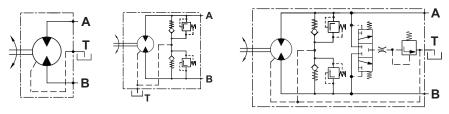
Doppel-Nachsaug- und Druckbegrenzungsventil, Einstellung 350 Bar

Ventil **FLU** SPÜLVENTIL

- Verwendung besonders im geschlossenen Kreis: Standardausspülung (ohne Angabe) = 4 bis 8 L/Min. und Öffungsdruck 16 Bar bei 20 Bar Speisedruck im geschlossenen Kreis
- Für andere Werte bei Pos. 8 und Pos. 9 folgende Angaben wählen:

Pos.8 ohne 10 Druck
Pos.9 ohne L3.5 L5.5 Ausspülmenge

BEISPIELE


TMF B46SH2**FLU** Ausspülmenge 6 \pm 2 L/Min., Öffnungsdruck 16 Bar

TMFB46SH2**FLU10L5.5** Ausspülmenge 5.5±1 L/Min. Öffnungsdruck 10 Bar

TMF B46SH2**FLUL3.5** Ausspülmenge 3.5±1 L/Min. Öffnungsdruck 16 Bar

Hydraulikmotoren Baugrösse TMF 100

Hochleistungs-Konstantaxialkolbenmotoren

Der Leckanschluss muss immer genutzt werden.

ANWENDUNGEN

Landmaschinen

Strassenbaumaschinen

Bergwerksmaschinen

Nahrungsmittel-Industrie

Schwenkantriebe

Hydrostatische Fahrantriebe

Verdichter

Lüfterantriebe

Sondermaschinenbau

MERKMALE

Schrägscheibe

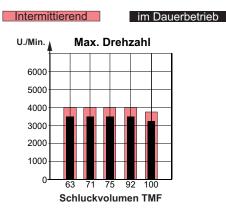
Verschiedene Wellenausführungen

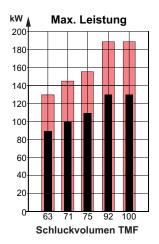
Verschiedene Ölanschlussvarianten

Hochdruckanschlüsse

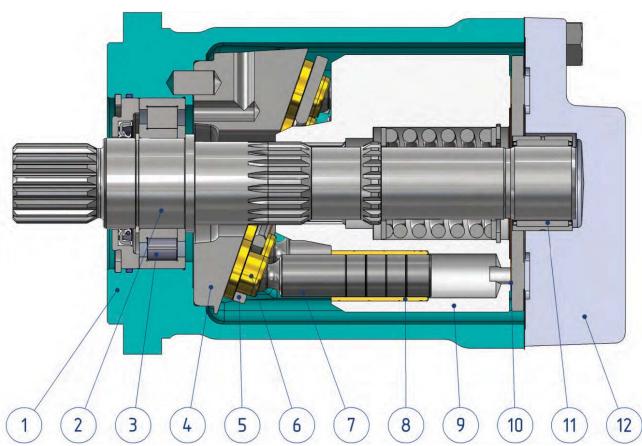
Integrierte Ventile

VORTEILE


Hohes Anlaufmoment Schwingungsfreier Betrieb Hohe Lebensdauer


Grosse Leistungsdichte

HAUPTDATEN


Schluckvolumen	cm³/U.	63.58÷98.75
Max. Drehzahl	U./Min.	3500
Max. Drehmoment	Nm	550
Max. Leistung	kW	130
Max. Druckbeaufschlagung	bar	350
Max. Ölzufuhr	L/Min.	326
Mindest-Drehzahl	U./Min.	500
Druckflüssigkeit		Mineralöl HLP (DIN 51524) oder HM (ISO 6743/4)
Temperaturbereich,	°C	-40÷82
Optimale Ölviskosität	mm²/s	12÷68
Filtrierung		ISO Kode 18/16/13 (empfohlene Mindest-Filterfeinheit 10 My)

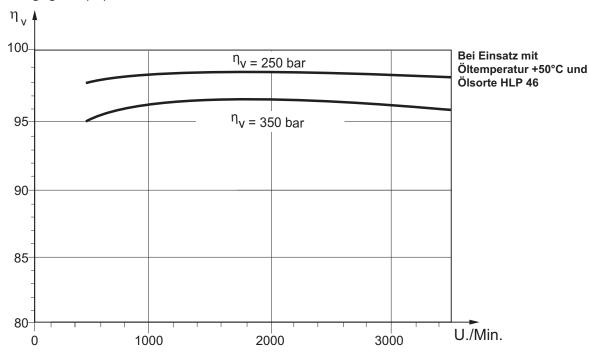
SCHNITTBILD

- 1. Gussgehäuse
- 2. Gehärtete Welle
- 3. Robustes Axial-Radial-Lager
- 4. Einteilige Schrägscheibe
- 5. Druckplatte
- 6. Grosse Kolbenschuhe
- 7. Grosse Kolben
- 8. Messingbuchsen
- 9. Gehärteter Kolbenblock
- 10. Bimetall-Steuerscheibe
- 11. Nadellager
- 12. Einteiliger Enddeckel

Die Hochleistungsausführung der TMF-Motoren bietet viele Vorteile im Vergleich zu typischen Schrägscheiben-Motoren. Das Anlaufmoment und der Gesamt-Wirkungsgrad sind vergleichbar mit den Werten von Schrägachsen-Motoren. Der Hauptvorteil der TMF-Motoren gegenüber Schrägachsen-Motoren ist der Betrieb ohne Pulsierungen und Schwingungen. Zudem sind die TMF-Motoren bewiesenermassen zuverlässiger.

FUNKTIONSDATEN

		TMF 63	TMF 71	TMF 75	TMF 92	TMF 100
Schluckvolumen cm³/U.		63.58	71.5	76.84	93.18	98.75
Max. Drehzahl	Dauer	3500	3500	3500	3500	3240
U./Min.	Int.*	4000	4000	4000	4000	3750
Max. Drehmoment ***	Dauer	354	398	428	514	550
Nm	Int.**	425	478	514	616	645
Leistung	Dauer	89	100	108	130	130
kW	Int.**	129	145	156	188	188
Max. Druck	Dauer	350	350	350	350	350
bar	Int.**	420	420	420	420	410
Max. Öldurchfluss	Dauer	223	250	269	326	320
L./Min.	Int.*	255	286	308	373	370
Wellenbelastung Axial max. ****	N			Fa=2500		
Radial max. ****	N			Fr=4500		
Mindest-Drehzahl U.				500		
	7.41111.			500		
Max. Druck in Leckölleitung bar		Der Leckanschluss muss immer genutzt werden				
Gewicht Kg				32.5		


- * Intermittierende Drehzahl (Öldurchfluss) für Druck bis 150 bar;
- ** Intermittierende Belastung, gilt für max. 10% pro Minute;
- *** Theoretisches Drehmoment;
- **** Diese Angaben beziehen sich auf die optimalen Lastangriffspunkte Fr und Fa auf der Welle.
- 1. Im Dauerbetrieb soll die empfohlene Leistung nicht überschritten werden.
- 2. Empfohlene Filtrierung nach ISO 4406 und Reinheitskode 18/16/13 oder besser. Diese Filtrierung entspricht SAE AS 4059 8A/78/7C. Nominal 10 My oder besser.
- 3. Empfohlen ist ein hochwertiges Mineralöl HLP (DIN 51524) oder HM (ISO 6743/4).
- 4. Empfohlener Viskositätsbereich: 12 68 cSt (siehe auch Seite 37).
- 5. Maximal empfohlene Systemtemperatur = 82°C
- **6.** Zum Schutz des Motors muss dieser vor der Inbetriebnahme mit Hydrauliköl gefüllt werden; danach mit geringer Belastung und Drehzahl für ca. 10-15 Minuten einlaufen lassen.

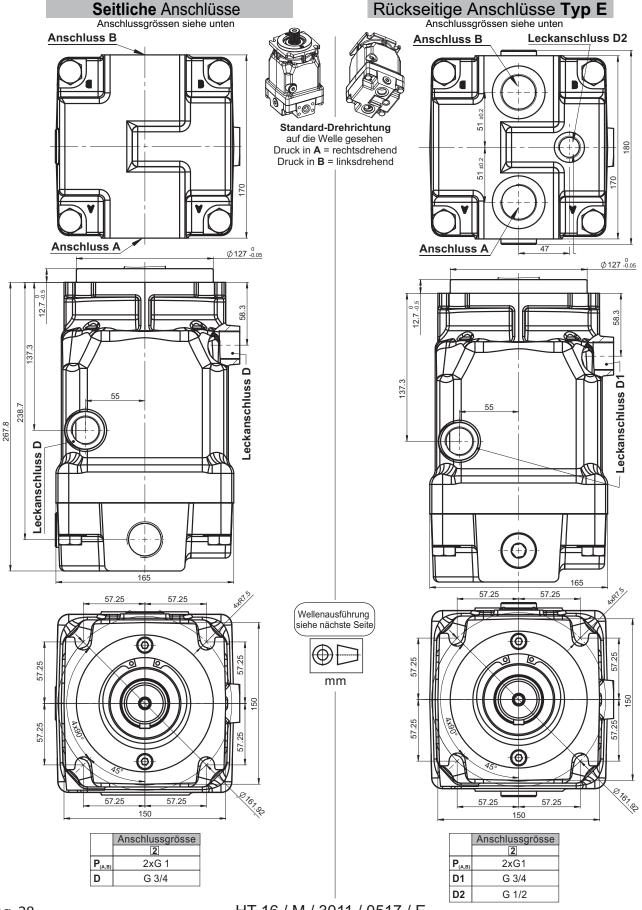
FUNKTIONSDIAGRAMME

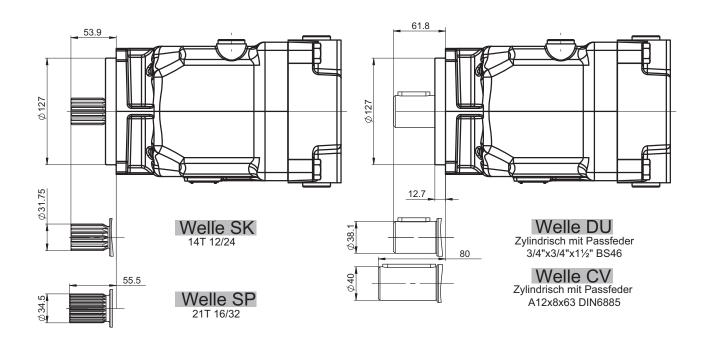
Die Wirkungsgradkurven gelten für alle Baugrössen.

VOLUMETRISCHER WIRKUNGSGRAD

Wirkungsgrad (%)

GESAMT-WIRKUNGSGRAD


Wirkungsgrad (%)


Die Motorbaugrösse kann bzgl. Druck, Drehmoment, Drehzahl und Durchflussleistung mit den auf Seite 38 angegebenen Formeln bestimmt werden.

Die Wirkungsgrade können aufgrund unterschiedlicher Einsatzbedingungen variieren.

Hauptabmessungen und Ölanschlüsse Seitliche Anschlüsse - Standard - Anbauflansch SAE-4C

Wellenausführungen Anbauflansch SAE-4C

Wellenabmessungen siehe Seiten 32÷33

ZULÄSSIGE WELLENBELASTUNG

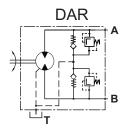
Zulässige Welle		
Axial max.	N	Fa=2500
Radial max.	N	Fr=4500

Die Maximalwerte gelten für die bestmöglichen Lastangriffspunkte und Wellenposition (siehe Seite 34).

BESTELLSCHLÜSSEL

	1	2	3	4	5	6	7	8	9
TMF									

Pos.1 - Anbauflansch	Pos.6 - Dichtungsmaterial
4C - SAE-C 4-Loch-Flansch, Zentrierung Durchm.	o. A NBR
127 mm, Lochabstand 161,92 mm	V - FKM (Viton)
Pos.2 - Ausführung Ölanschlüsse	Pos.7 - Ventile
o. A gegenüberliegende seitliche Anschlüsse	Siehe Informationen auf nächster Seite
E - rückseitige Anschlüsse	o. A ohne Ventil
	FLU - Spülventil
Pos.3 - Schluckvolumen	DAR - Doppel-Nachsaug- und Druckbegrenzungsventil
63 - 63,58 cm³/U.	(nicht lieferbar für Option E von Pos. 2)
71 - 71,5 cm³/U.	Pos.8 - Druckeinstellung des Ventils
75 - 76,84 cm³/U.	o. A ohne
92 - 93,18 cm³/U.	x - Druck - siehe nächste Seite
100 - 98,75 cm³/U.	
Pos.4 - Wellenausführungen *	Pos.9 - Ausspülmenge des Ventils
SK - ø 31,75 Vielkeil SAE-C Z14-12/24 DP,	o. A ohne
mit Bohrung M10 SP - ø 34,5 Vielkeil SAE-C Z21-16/32 DP,	Lx - Ausspülmenge - siehe nächste Seite
mit Bohrung M12	
DU - ø 38.1 zylindrisch Passfeder 9.528, L38.1	
mit Gewindebohrung 3/8"-16 UNC CV - ø 40 zylindrisch mit Bohrung M12-6H,	
mit Gewindebohrung 3/8"-16 UNC	
mit Gewindebohrung 3/8"-16 UNC CV - ø 40 zylindrisch mit Bohrung M12-6H, Passfeder A12 x 8 x 63 DIN6885 * Die zulässige Wellenbelastung darf nicht	

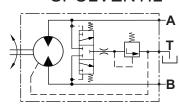

VENTILE

Die Motorabmessungen ändern sich im Vergleich zu den Standardmotoren.

Ventil **DAR**

kombiniertes Doppel-Nachsaug- und Druckbegrenzungsventil

- Die Nachsaugventile sind beim Einsatz als Ventilatorantrieb empfohlen.
- Die Druckbegrenzungsventile schützen den Motor vor Überlastung.


Bitte nachstehende Einstellungen beachten: Pos.8 250 300 350 Bar Druck

BEISPIEL

TMF 4 C 1 0 0 S T 2 **D A R 3 5 0**

Doppel-Nachsaug- und Druckbegrenzungsventil, Einstellung 350 Bar

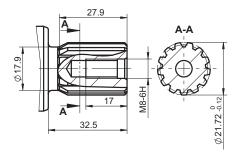
Ventil **FLU** SPÜLVENTIL

- Verwendung besonders im geschlossenen Kreis: Standardausspülung (ohne Angabe) = 5 bis 9 L/Min. und Öffungsdruck 16 Bar bei 20 Bar Speisedruck im geschlossenen Kreis
- Für andere Werte bei Pos. 8 und Pos. 9 folgende Angaben wählen:

Pos.8 ohne 10 Druck
Pos.9 ohne L5.5 L9 Ausspülmenge

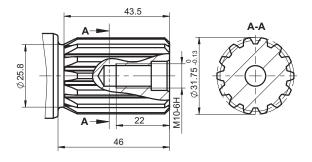
BEISPIELE

TMF4C100ST2**FLU** Ausspülmenge 7±2 L/Min., Öffnungsdruck 16 Bar

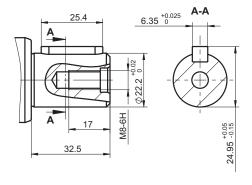

TMF4C100ST2 **FLU10L5.5** Ausspülmenge 5.5±1 L/Min., Öffnungsdruck 10 Bar

TMF4C100ST2**FLUL3.5** Ausspülmenge 9±1 L/Min., Öffnungsdruck 16 Bar

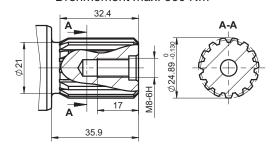
Abmessungen der Wellenausführungen


SD

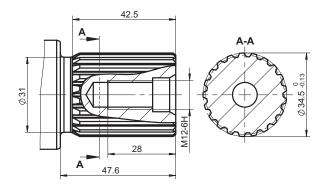
ø 21,72 mit Bohrung M8-6H Vielkeil SAE-B Z13 16/32 DP ANSI B92.1-1970 Drehmoment max. 220 Nm


SK

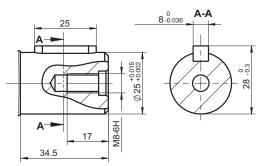
ø 31,75 mit Bohrung M10-6H Vielkeil **SAE-C Z14 12/24 DP** ANSI B92.1-1970 Drehmoment max. 600 Nm


CK

ø 22,2 mit Bohrung M8-6H zylindrisch SAE-B mit Passfeder 1/4"x1/4"x1" BS46 Drehmoment max. 180 Nm


SF

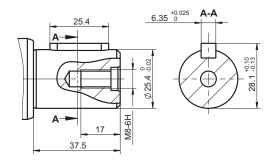
ø 24,89 mit Bohrung M8-6H Vielkeil SAE-BB Z15 16/32 DP ANSI B92.1-1970 Drehmoment max. 360 Nm


SP

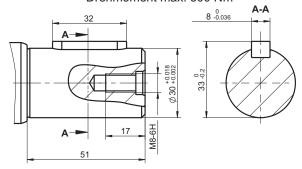
ø 34,5 mit Bohrung M12-6H Vielkeil SAE-C Z21 16/32 DP ANSI 92.1-1970 Drehmoment max. 1085 Nm

ML

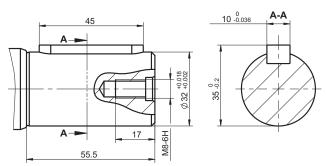
ø 25 mit Bohrung M8-6H zylindrisch metrisch, mit Passfeder A8x7x25 DIN6885 Drehmoment max. 250 Nm


Die zulässige Wellenbelastung darf nicht überschritten werden!

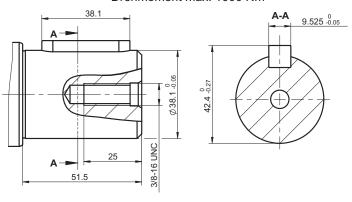
Abmessungen der Wellenausführungen


CM

ø 25,4 mit Bohrung M8-6H zylindrisch SAE-BB mit Passfeder 1/4"x1/4"x1" BS46 Drehmoment 250 Nm

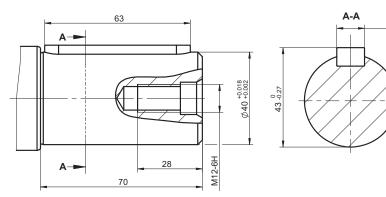

CQ

ø 30 mit Bohrung M8-6H zylindrisch metrisch, mit Passfeder A8x7x32 DIN6885 Drehmoment max. 300 Nm


CS

ø 32 mit Bohrung M8-6H zylindrisch metrisch, mit Passfeder A10x8x45 DIN6885 Drehmoment max. 565 Nm

DU

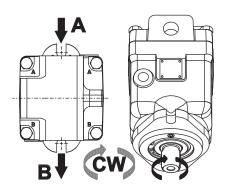

ø 38,1 Zylindrisch mit Passfeder 3/4"x3/4"x1.1/2" mit Gewindebohrung 3/8"-16 UNC-2B Drehmoment max. 1000 Nm

12 -0.043

CV

ø 40 mit Bohrung M12-6H zylindrisch metrisch, mit Passfeder A12x8x63 DIN6885 Drehmoment max. 1100 Nm

Die zulässige Wellenbelastung darf nicht überschritten werden!

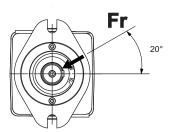


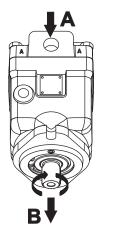
EINBAUHINWEISE

DREHRICHTUNG

Standard-Drehrichtung, auf die Welle gesehen:

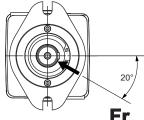
auf die Welle gesehen:
Druck in Anschluss **A** = rechtsdrehend
Druck in Anschluss **B** = linksdrehend

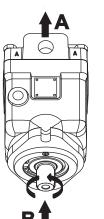



BESTER ANGRIFFSPUNKT FÜR RADIALE WELLENBELASTUNG

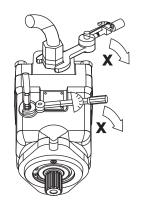
Bester Angriffspunkt für radiale Wellenbelastungen in Abhängigkeit von der Drehrichtung

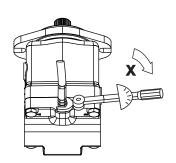
Standard-Drehrichtung rechtsdrehend





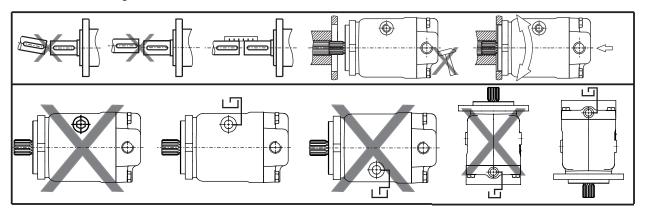
Linksdrehend



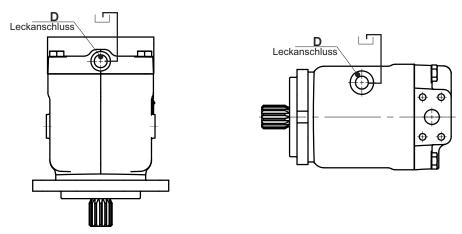


EINBAUHINWEISE

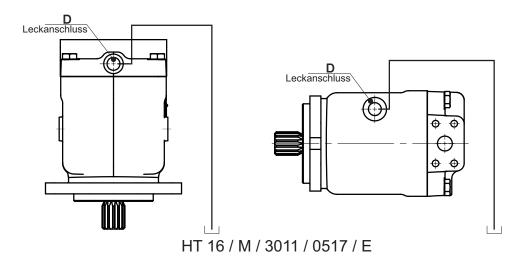
Empfohlene Anzugsdrehmomente für Metallstopfen und Ölanschlüsse



Anschlussgewinde	Max. Anzugsmoment x = daNm					
Anschlussgewinde	Mit Kupferscheibe	t Kupferscheibe Mit Alluminiumscheibe		Mit O-Ring		
G 1/4	2	3	4	2		
G 3/8	2	5	6	2		
G 1/2	3	8	10	3		
G 3/4	5	13	16	5		
G 1	8	20	25	8		

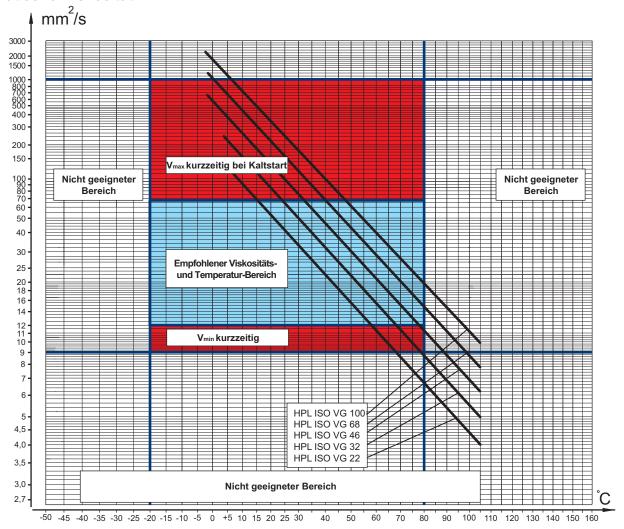

EINBAUHINWEISE

Vor der Inbetriebnahme und während des Betriebs muss das Motorgehäuse immer mit Öl gefüllt sein. Die Inbetriebnahme muss zunächst mit niedriger Drehzahl erfolgen und ohne Last, zum Beispiel mit 1000 U/Min. und Druck 50 Bar, bis alle Luft aus dem Motor und dem Hydrauliksystem entwichen ist. Die Dauer hiervon ist auf ca. 10-15 Minuten beschränkt. Der höchstgelegene Leckanschluss "D" muss mit dem Tank verbunden werden. Der maximal zulässige Druck am Leckanschluss darf 5 Bar nicht überschreiten.


Einbau unterhalb des Tank-Füllstands (empfohlen)

- Vor der Inbetriebnahme den Motor am höchstgelegenen Leckanschluss "D" mit Hydrauliköl füllen.
- Den Motor mit niedriger Drehzahl fahren, bis alle Luft aus dem System entwichen ist.
- Die Leckageleitung muss bis mindestens 200 mm unter den Mindest-Füllstand im Tank reichen.

Einbau über dem Tank-Füllstand


- Den Axialkolbenmotor vor der Inbetriebnahme am höchstgelegenen Leckanschluss "D" mit Hydrauliköl befüllen.
- Den Motor mit niedriger Drehzahl fahren, bis alle Luft aus dem System entwichen ist.
- Die Leckageleitung muss bis mindestens 200 mm unter den Mindest-Füllstand im Tank reichen.

VISKOSITÄTSHINWEISE

Um den besten Wirkungsgrad und eine optimale Lebensdauer des Motors zu gewährleisten, wird empfohlen, eine Druckflüssigkeit mit Betriebsviskosität entsprechend untenstehender Diagramme zu verwenden.

Kinematische Viskosität

Temperatur

Die oben angegebenen Viskositätswerte sind nur Hinweise. Zur tatsächlich geeigneten Viskosität mit dem Hersteller der Druckflüssigkeit Kontakt aufnehmen.

GRUNDSÄTZLICHE FORMELN

Die Motorauslegung, Bestimmung von Betriebsdruck und Durchflussmenge können entsprechend der vorgesehenen Anwendung mit nachstehenden Formeln erfolgen.

Metrische Einheiten

Wirkungsgrad	$\eta_t = \eta_{mh^{\bullet}} \eta_v \eta_{mh} = \frac{\eta_t}{\eta_v}$	$\eta_{v} = \frac{\eta_{t}}{\eta_{mh}}$
Erforderliche Ölmenge (Motor)	$Q = \frac{Vg.n}{1000.\eta_v}$	[l/min]

Drehmoment
$$M = \frac{Vg_{.\Delta}p_{.\eta_{mh}}}{62.8}$$
 [Nm]

Leistung (Motor)
$$P = \frac{M.n}{9550} = \frac{Q.\Delta p.\eta_t}{60}$$
 [kW]

Drehgeschwindigkeit
$$n = \frac{Q.1000.\eta_v}{Vg}$$
 [min⁻¹]

Förderleistung
$$Q = \frac{Vg.n.\eta_v}{1000}$$
 [I/min]

Antriebsmoment
$$M = \frac{Vg.\Delta p}{62.8.\eta_{mh}}$$
 [Nm]

$$\begin{array}{ccc} \textbf{Leistungsbedarf} & & P = \frac{M.n}{9550} = \frac{Q.\Delta p}{60.\eta_t} & \text{[kW]} \\ \end{array}$$

Vg = Schluckvolumen pro Umdrehung [cm
3
/U.]
 $_\Delta$ P = $_{HP}$ - $_{PLP}$ [bar]
 $_{HP}$ = Hochdruck [bar]

$$p_{LP} = Niederdruck$$
 [bar]

 η_v = Volumetrischer Wirkungsgrad

 η_{mh} = Mechanisch-hydraulischer Wirkungsgrad

 η_t = Gesamt-Wirkungsgrad

Anwendungsformeln

Motordrehzahl: n

$$n = \frac{2,65 \cdot v_{km} \cdot i}{R_{-}}$$

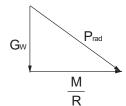
v_{km}-Fahrgeschwindigkeit [km/h]

R...- Rad-Radius [m]

i - Untersetzungsverhältnis Motor / Rad

Ohne Untersetzungsgetriebe ist i = 1

Radiale Belastung des Motors: Prad, N


Wenn der Motor in Verbindung mit einer Riemenscheibe oder einem Zahnrad arbeitet, direkt auf der Motorwelle montiert, ist die gesamte Radialbelastung auf der Welle **P**_{rad} die Summe von der Drehkraft und dem Lastgewicht.

Gw - Lastgewicht auf Welle

Prad - Gesamt-Radialbelastung auf der Motorwelle

M/R - Motion force

$$P_{rad} = \sqrt{G_w^2 + \left(\frac{M}{R}\right)^2}$$

Gesamt-Zugkraft: TE, N

Die Gesamt-Zugkraft ist der benötigte Kraftaufwand, um ein Fahrzeug zu bewegen; also die Summe der errechneten Kräfte plus 10% Forfait wegen des Luftwiderstandes.

$$TE=1,1.(RR + GR + FA + DP)$$

RR - erforderliche Kraft zur Überwindung des Rollwiderstands

GR - Kraftaufwand zur Überwindung von Steigungen

FA - Kraftaufwand zur Beschleunigung

DP - zusätzlich erforderter Kraftaufwand (z.B. Fahrzeug mit Hänger)

Motor-Drehmoment: M, Nm

Erforderliches Drehmoment des Hydraulikmotors:

$$M = \frac{TE.R_{m}}{N.I.\eta_{M}}$$

I - Anzahl Motoren

 η_M - mechanischer Wirkungsgrad des Getriebes (sofern bekannt)

Die Produktpalette von HANSA-TMP ist sehr umfangreich und viele Produkte können unterschiedlich eingesetzt werden. Die Informationen dieser Druckschrift können aber nur für gewisse Anwendungen beschränkt sein.

Für unzureichende Informationen bitte HANSA-TMP kontaktieren. Zur Erteilung derselben kann es erforderlich sein, spezifische Auskünfte zum geplanten Einsatz geben zu müssen.

Es wurden alle Anstrengungen unternommen, dass die vorliegenden Informationen der Genauigkeit entsprechen; dennoch gilt diese Druckschrift in keiner Weise als Vertragsunterlage, weder ausdrücklich, noch vermutungshalber.

Die Datenangaben gelten für die Standardprodukte. HANSA-TMP beabsichtigt, die Produkte ständig zu verbessern. Die Informationen zu den verschiedenen Produkten können deswegen jederzeit und ohne Vorankündigung geändert werden. Alle Unterlagen sind nicht rechtskräftig.

