

Contents

Introduction	3
CMA90 Specifications and Performance	4
CMA Cross Sections	5–6
CMA System Layout	7–12
Interbank Connection Cables	13
CMA Software Offering	13
CMA90 Installation views (5 section Standard EH Valve)	14-15
CMA90 Installation views (5 Section with manual override)	16-17
Model Code – Inlet Section	18
Model Code – Work Section	19
Notes	20–21

Introduction

The CMA90 is an advanced CAN-Enabled electro-hydraulic sectional mobile valve with independent metering that utilizes pressure and position sensors, on board electronics, and advanced software control algorithms. Where conventional mobile valves often compromise on precision or response, the CMA delivers both. The CMA offers high performance with sub micron hysteresis, closed loop control over the spool position, and repeatable performance.

CMA offers customers the next generation in advanced mobile valves with unlimited possibilities to differentiate your machine capabilities.

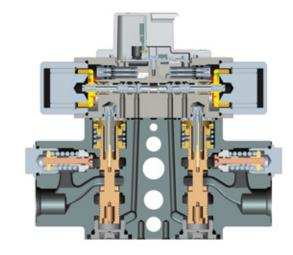
Key Benefits of this advanced mobile valve include:

- Precise control maintained for all load conditions
- Reduction in metering losses / energy management
- High valve responsiveness
- Flow Sharing Pre and Post Comp Capabilities
- Flexibility in configuration / easily change parameters
- Command factory-calibrated flow or pressure from either work port
- Easier communication with the valve
- Reduced load on the Vehicle CAN bus
- Advanced Diagnostics for improved reliability and productivity
 - Hose Burst Detection
 - Limp mode
 - Diagnostics on the inlet, tank, load sense, work port pressures, spool position, consumed flow, and oil temperature.
- Platform can support future software development for future product development.
- Reliable performance across a broad temperature range

CMA90 Specifications and Performance

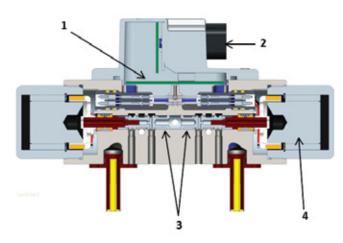
Pressures		
Inlet Rated	380 bar (5511 psi)	
Inlet Max	440 bar (6382 psi)	
Work Port Rated	380 bar (5511 psi)	
Work Port Max	440 bar (6382 psi)	
Tank*	Max 30 bar (435 psi)	
Flow		
Work Port (max)	90 lpm (24 gpm) @ 14 bar ∆ P	
Leakage		
Max Leakage**	20 cc @100 bar @ 21 cst	
Construction		
Sectional	Up to 8 sections per block	
	Up to 15 sections per VSM	
Port Types		
	SAE 0-ring	
	BSP	
Inlet Section Options		
	Variable Displacement (Load Sensing)	
Work Section Options		
Standard Spools	90 lpm (24 gpm)	
Work Port Valves	Anti-Cavitation	
	Port Relief & Anti-Caviation	
	Port Relief	
Actuation		
Primary	CAN	
Emergency	Mechanical Override	

	40	
Temperature		
Ambient (operating)	-40°C to 105°C	
Standard Oil (operating)	-40°C to 85°C	
Extended Oil (operating)	-20°C to 105°C	
Storage	-40°C to 105°C	
Filtration		
ISO 4406	18/16/13	
Electromagnetic Protection		
Conducted Emissions	CISPR 25; 2008.ISO 13766:2006.	
	EN13309:2010. ISO14982:2009	
Radiated Emissions	CISPR 25; 2008.ISO 13766:2006.	
	EN13309:2010. ISO14982:2009	
Radiated Immunity	ISO 11452,	
Electrostatic Discharge	ISO 10605 and SAE J1113-13	
Reverse Supply Protection	-36v	
Transient Immunity	ISO 7637-2:2007	
Environmental		
Ingress Protection	IP67	
Oil Temperature Viscosity		
Recommended Viscosity	85 to 10 cSt	
Absolute Maximum Viscosity	2250 cSt	
Absolute Minimum Viscosity	7 cSt	
Electrical		
Input Voltage	9 - 32 VDC	
CAN Interface	J1939 2.0B	
	CAN Open	
Electrical Interface Connectors		
Deutsch (VSM)	DT06-12SB-P012	
Deutsch (VSE)	DT06-12SA-P012	


^{*}With manual override, tank limited to 10 bar (145 psi) maximum. Max 30 bar is at constant rate.

^{**}Data taken from work port to tank

CMA Cross Sections


Valve Cross Section:

- 1. Pilot Valve
- 2. Main Stage
- 3. Linear Position Sensor
- 4. Port Reliefs / Anti Cavs
- 5. Main Metering Spools
- 6. Work Port A
- 7. Work Port B

Pilot Valve

- 1. Embedded Micro Controller
- 2. Deutsch Connector Interface
- 3. Independent Pilot Valves
- 4. Linear Force Motors

CMA Cross Sections

Principles of Operation

The work section is comprised of two independent spools that act as a pair working to control double acting services, or alternatively as single spools controlling a single acting service (2 single axis services can be controlled from any work section).

Demands to each work section are transmitted over a CAN Bus

and power is provided to each work section via a single daisy chain cable arrangement. Each work section has a single pilot valve comprised of on-board electronics, embedded sensors, and two independent 3 position 4 way pilot spools driven by a low power embedded micro controller.

The independent pilot spools control the mainstage spools. Closed loop control of each work section is done locally by leveraging the on-board electronics and sensors.

Each mainstage spool has its own position sensor enabling closed loop position control of the mainstage spool. Further, a pressure sensor is located in each work port, pressure line and tank line.

With the up and downstream pressure information known at any time, flow delivered to the service can be controlled by moving the spools to create the appropriate orifice area for the desired flow rate.

Figure 1: CMA system with Load-Sensing Inlet & a single work-section

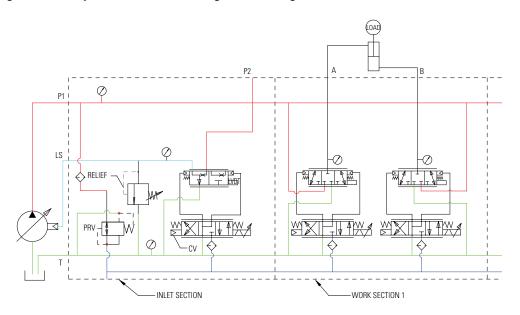
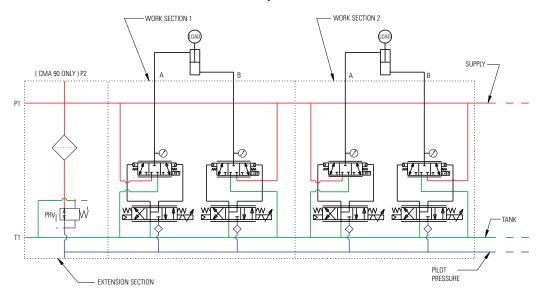
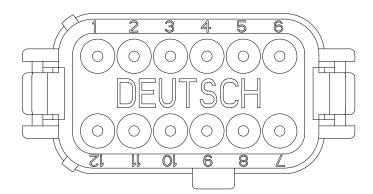
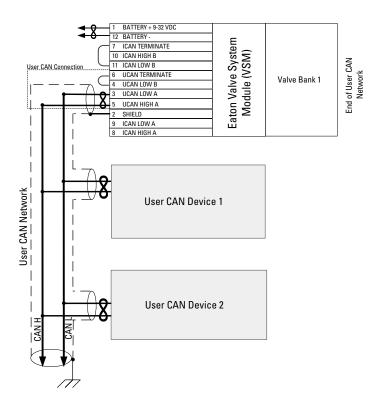



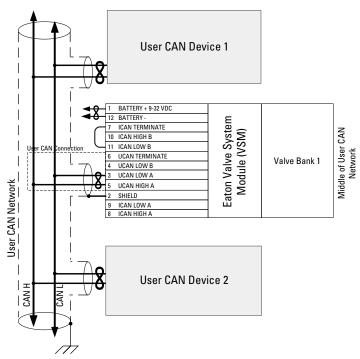
Figure 2: Extension Inlet

Extension System

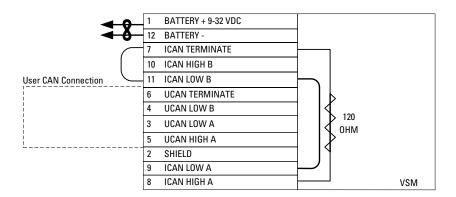


There are multiple interconnection options for the CMA90 valve systems.

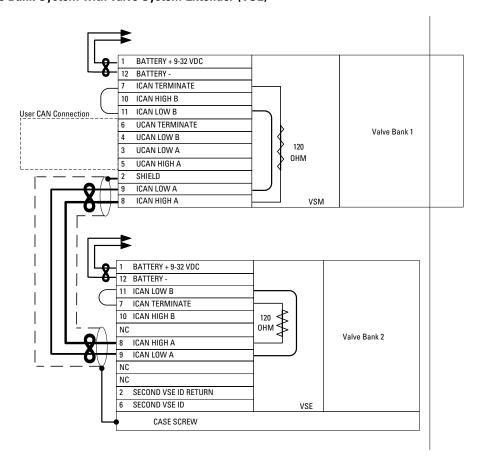

The following illustrates possible system configuration options. Configuration is dependent on application requirement and is constrained by the following rules:

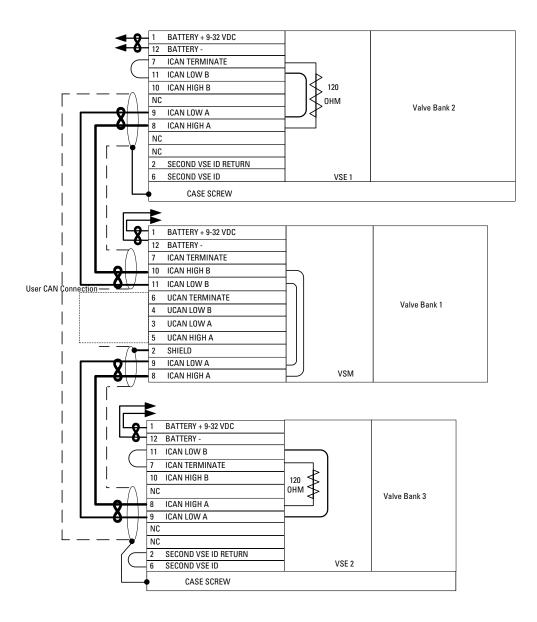

- Sectional construction with up to 8 sections per bank
- Maximum 15 sections per Valve System Module (VSM)
- One VSM and CV required per system
- If distance between an extension valve bank and the VSM or VSE is less than 6 meters, they can be connected using a daisy chain extension cable. See options on page 12
- If distance between valve banks is greater than 6 meters, they
 must be connected using a VSE and external wiring harness. Max
 distance between a VSM and VSE is 30 meters. See page Total
 Interconnect CAN(ICAN) Wiring Lengths
- No more than two (2) valve system extenders (VSE) per system
- If more than 15 work sections are required, this can by accomplished by using additional CMA systems and their corresponding VSM. Additional VSMs will appear as another Node on the User CAN Network.
- If application specific Electromagnetic Compatibility testing indicates CAN cable shielding is needed, connect CAN shield as shown

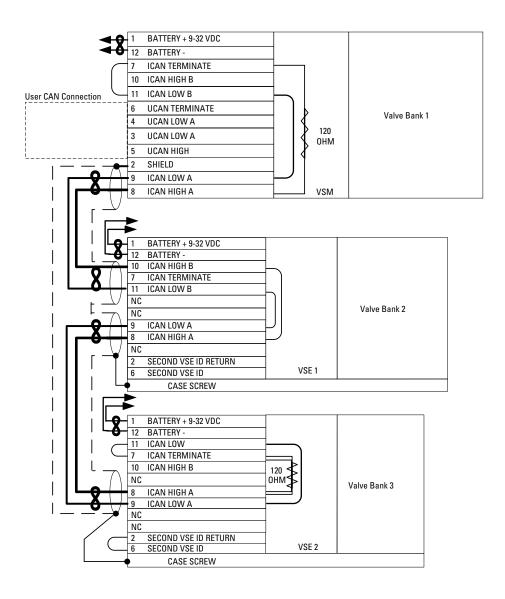
DT Series DT06-12S?-P012
View of Contact / Wire Insertion Side of Connector Body

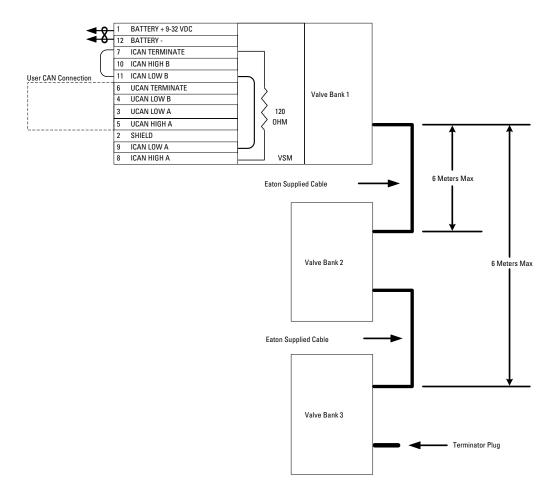


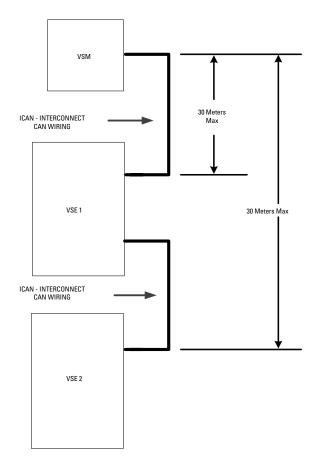
User CAN Diagram




Single Base System


Double Bank System with Valve System Extender (VSE)


Triple Bank System with VSM between VSEs


Triple Valve Bank System with VSM at the Start of the System

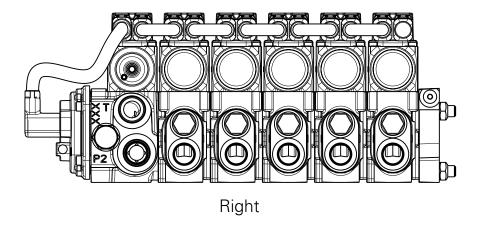
Multi-Bank System without Valve System Extenders

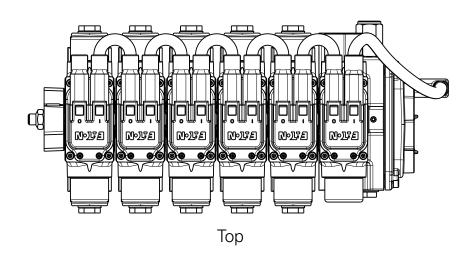
Multi-Bank System with Valve System Extenders

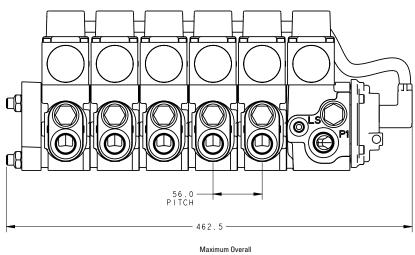
Interbank Connection Cables

	Part Numbers	Description
Interbank Connection Cables	6034654-201	2.0 meter interconnection cable
	6034654-401	4.0 meter interconnection cable
	Notes: If more than one cable is used in a single daisy chain with multiple valve banks, then the combined lengths must be <=6m.	
CAN Bus Terminator Assembly	6034032-001	120 ohm CAN Bus terminator for internal CAN network
Compatible Interface Deutsch Connector	DT06-12SB-P012	12-way plug connector body (VSM)
	DT06-12SA-P012	12-way plug connector body (VSE)
Wire Harnesses	6034030-001	Valve to valve harness
	6034031-001	VSM or VSE harness to first valve on the bank

CMA Software Offering

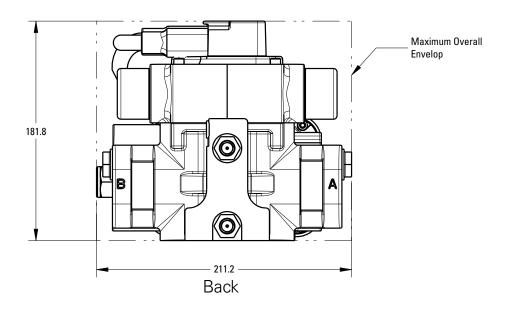

Standard Software Control Features

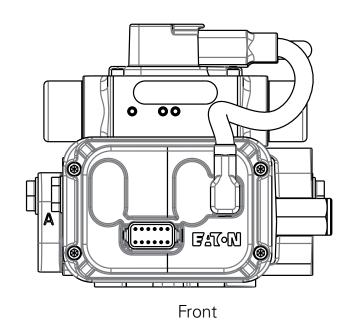

Software	Description	
Pressure compensated flow control	Load-independent flow control	
Flow compensated pressure control (standard performance)	Single service pressure control while either sinking or sourcing flow.	
Intelli float	Lowers the load at a configurable rate and then enters full float mode	
Standard ratio flow share (with priority capability)	Pre or post comp capabilities in one valve bank. All service flow demands are reduced by the same ratio. Can also exempt services from flow-sharing to maintain priority.	
Intelligent twin spool flow control (IFC)	Versatile flow controller which maintains the desired flow independent of transitions between passive and overrunning loads	
Boom anti-oscillation	A feature of IFC which reduces service oscillation induced by moving large structures, such as a boom.	
Electronic load sense enabled	Enables operation with a compatible pump or when multiple CMA systems are present on the same CAN network	
Electronic work port relief valve	Configurable electronically controlled relief valve against externally applied loads	
Electronic work port pressure limit (feed reducer)	Configurable electronically controlled pressure limit applied to user flow demands without consuming additional pump flow	
Anti-fallback protection	Electronically controlled load-drop prevention applied to user flow demands	
Single spool flow control	Sink or source flow on individual service ports	
Single spool position control	Direct spool position control on each spool	
Smart Data	Diagnostics on all on-board sensors. Inlet, Tank, LS, Work Port pressures, Spool Positions, oil temperature sensor data availability.	
·	· · · · · · · · · · · · · · · · · · ·	


Optional Software Features

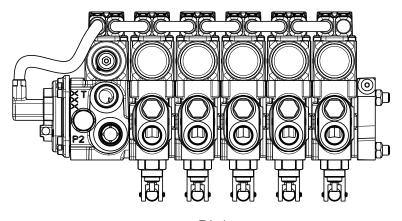
Software	Description
Data control package	Broadcast of each spool's flow consumption
Flow compensated pressure control (high performance)	High performance single-spool pressure control while either sinking or sourcing flow
Torque Control	Advanced force or torque control for double-acting cylinders or motors
Hose burst detection	Prevents major oil spill events by monitoring flow consumption on each service and closing the spools for that circuit if a major leak is detected
Limp mode	If a sensor fails, the valve will continue to work with reduced performance until the machine can be serviced
Cascade and Uniform Flow Share	Cascade: maintains demanded flow to selected high priority services by reducing flow to lowest priority services
	Uniform: All flow demands are reduced by the same absolute amount (i.e. all reduced by 1 LPM)

CMA90 Installation Views (5 section Standard EH Valve)

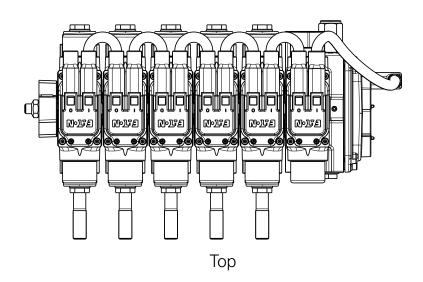


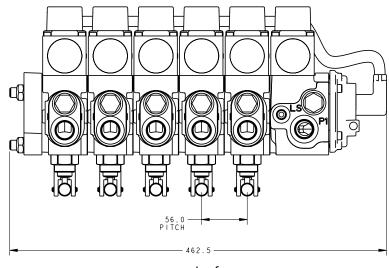


Maximum Overall Envelop

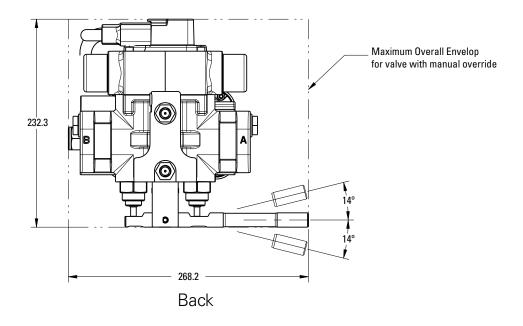

Left

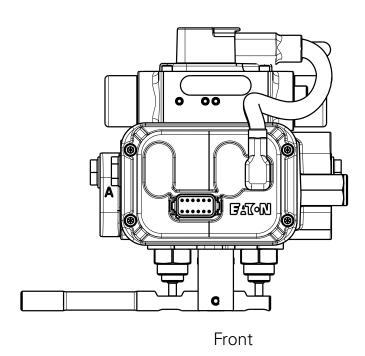
CMA90 Installation Views (5 section Standard EH Valve)

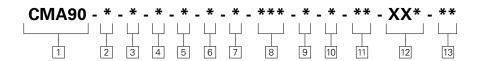




CMA90 Installation Views (5 Section with manual override)


Right




Left

CMA90 Installation Views (5 Section with manual override)

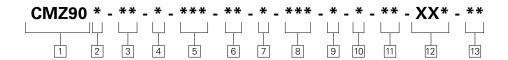
Model Code – Inlet Section

- 1 CMA90 Series
- **Communication Protocol**
 - J1939 С **CAN OPEN**

 - 0 None
- Interface Module
 - Μ **VSM**
 - Ε **VSE**
- 0 None
- 4 Port Types
 - P1= SAE-10 S SAE P2= SAE-12
 - T = SAE-12LS= SAE-4 **BSP** P1= G 1/2 В
 - P2= G 3/4 T = G 3/4
 - LS= G 1/4
- 5 **Inlet Pressure Controller**
 - Variable Displacement F Fixed Displacement
 - none, Used on VSE or extension block
- **Active Pressure Port**
 - 1 Р1
 - P2
 - 3 P1 & P2
- **Manual Override**
 - None
 - Manual Override on CV

- Main Relief Setting (In bar)
 - 000 = None155 293 172 310 190 328 207 345 224 362 241 379 259 397

414


- 276 9 Paint Type
 - Α No paint
 - В Blue Primer
 - Std. Flat Black
- Seals
 - Default 1
 - **HNBR**
 - Viton

- **Special Features**
 - 00 None
- Software Version*
 - XXA Standard Software
 - **Design Code**
- 10 Design Code

Note: In the software specification, XX will be determined by the latest available software version

Model Code – Work Section

Design Code

10 Design Code

1 CMZ90 Series Spool Type at Position B Seal 11 MC 90 lpm, biased Default (NBR) **Body Port Thread Sizes** to center Η **HNBR** 3/4" 16 UNF (SAE-8) V Viton 90 lpm, biased to B 7/8" 14 UNF (SAE-10) tank 12 Special Features D G 1/2" 90 lpm, biased 00 None to pressure Spool Type at Position A MC 90 lpm, biased 13 Software Version* Valve Option at B to center Standard Software 0 None XXA 90 lpm, biased to Data Control **XXB** В Anti-cavitation valve tank Package (DCP) with shock valve HP 90 lpm, biased Anti-cavitation valve XXC High Performance to pressure Shock valve Flow Compensated S Pressure Control Valve Option at A Relief Setting at Position B (FCPF) 0 None XXD Torque Control (TQ) RV Setting in Bar Anti-cavitation valve В 155 293 XXE Hose Burst with shock valve 172 310 Detection (HBD) С Anti-cavitation valve 328 XXF Limp Mode (LM) 190 S Shock valve 207 345 XXG DCP & FCPC 224 362 XXH DCP & TQ DCP & HBD Relief Setting at Position A 241 379 XXI RV Setting in Bar XXJ DCP & LM 259 397 155 276 XXK DCP & HBD & LM 414 172 310 FCPC & TQ 000 = NoneXXL 190 328 **XXM** FCPC & HBD 207 345 **Manual Override Type** XXN FCPC & LM 224 362 FCPC & HBD & LM XXO None 0 241 379 XXP TQ & HBD Lever-handle toward 259 397 XXQ TQ & LM port A 276 414 Lever-handle toward XXR TQ & HBD & LM 000 = Noneport B XXS HBD & LM XXT Standard plus **Paint Type** optional package to

Note: In the software specification, XX will be determined by the latest available software version

No paint

Blue Primer

Std. Flat Black

В

Κ

include all software

Notes

-	

Notes

Eaton Hydraulics Group USA 14615 Lone Oak Road Eden Prairie, MN 55344 USA Tel: 952-937-9800 Fax: 952-294-7722 www.eaton.com/hydraulics Eaton
Hydraulics Group Europe
Route de la Longeraie 7
1110 Morges Switzerland Tel: +41 (0) 21 811 4600 Fax: +41 (0) 21 811 4601

Eaton Hydraulics Group Asia Pacific Eaton Building No.7 Lane 280 Linhong Road Changning District, Shanghai 200335 China Tel: (+86 21) 5200 0099 Fax: (+86 21) 2230 7240

