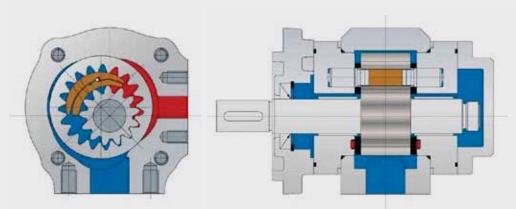
EIPC3 EIPC5 EIPC6

Innenzahnradpumpen



Innenzahnradpumpe Typ EIPC3 für Industrieanwendungen mit konstantem Verdrängungsvolumen

EIPC3

Merkmale

- Innenzahnradpumpe mit axialer und radialer Spaltkompensation
- Radialkompensation mit Segmenten
- Saug- und Druckseite radial
- Einsatzgebiet: Industriehydraulik
- Geräuscharmut
- Lange Lebensdauer
- Geringe Pulsation (Druckpulsation ~2 %)
- Mehrstromkombinationen

Technische Daten

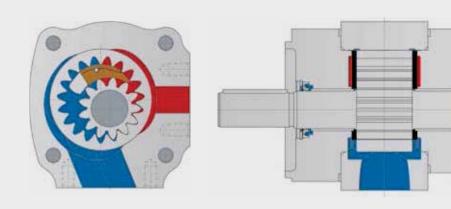
Nenngröße NG	020	025	032	040	050	063	064
Spez. Volumen Vth [cm³/U]***	20,0 24,8 32,1			40,1	50,3	63,1	64,4
Dauerbetriebsdruck [bar]**			250			180	250
Spitzenbetriebsdruck [bar] max. 10 sek 15 % ED**	320			300	280	210	280
Einschaltdruckspitze [bar]**		350		325	300	210	300
Nenn-Drehzahl [min ⁻¹]	200 - 3.400	200 – 3.200	200 – 3.000	100 – 2.500	100 – 1.800		100 – 1.800
Max. Drehzahl [min ⁻¹]	3.900	3.800	3.700	2.500	1.800		1.800
Nenn-Drehzahl [min ⁻¹]****	Ab	NG 040 verfügl	oar	100 – 3.200	100 – 3.000	200 – 2.200	100 – 2.200
Max. Drehzahl [min ⁻¹]****	Ab	Ab NG 040 verfügbar			3.600	2.400	2.400
Betriebsviskosität [mm²/s]	10 – 30			10 – 300			
Startviskosität [mm²/s]	2.000						
Betriebstemperatur [°C]				-20 bis +100			
Betriebsmedium		HL – HLP DIN 51 524 Teil 1/2					
Max. Mediumtemperatur [°C]				120			
Min. Mediumtemperatur [°C]				-40			
Max. Umgebungstemperatur [°C]				80			
Min. Umgebungstemperatur [°C]				-40			
Max. Eingangsdruck (Saugseite) [bar]				2 bar absolut			
Min. Eingangsdruck (Saugseite) [bar]			0,8 b	oar absolut (Star	t 0,6)		
Gewicht ca. [kg]	8,3	8,6	9,2	9,8	10,5	10,5	11,5
Verschmutzungsgrad	Klasse 20/18/15 nach ISO 4406						
Lebensdauererwartung	mindestens 1x 10 ⁷ LW gegen Spitzenbetriebsdruck						
Wirkungsgrad η vol:	93	93	94	95	95	94	95
Wirkungsgrad η hm:	91	92	92	93	93	92	93
Pumpengeräusch* (gemessen im Schallraum) dB[A]	62	63	64	65	66	64	68

 $n = 1.450 \text{ min}^{-1}$ $\Delta p = 250 \text{ bar (180 bar bei NG 063)}$ $T = 50 \, ^{\circ}\text{C}$ Medium: HLP 46

Die Pumpen haben keinen Korrosionsschutz. Die Grenzwerte dürfen nicht kumuliert angewendet werden. Bitte um Rückfrage

^{*} Gemessen im Schallmessraum Eckerle Hydraulic Division; Mikrofonabstand: 1,0 m axial

^{**} Für zulässige Drücke bei Drehzahlen von 400 bis 1.800 U/min. Bitte um Rückfrage bei höheren Drehzahlen.


 $^{{}^{***}\}quad \text{Aufgrund von Fertigungs toleranzen kann es beim F\"{o}rdervolumen geringe Abweichungen geben.}$

^{**** 2&}quot; Sauganschluss.

Innenzahnradpumpe Typ EIPC5 für Industrieanwendungen mit konstantem Verdrängungsvolumen

Merkmale

- Innenzahnradpumpe mit axialer und radialer Spaltkompensation
- Radialkompensation mit Segmenten
- Saug- und Druckseite radial
- Einsatzgebiet: Industriehydraulik
- Geräuscharmut
- Lange Lebensdauer
- Geringe Pulsation (Druckpulsation ~2 %)
- Mehrstromkombinationen auf Anfrage

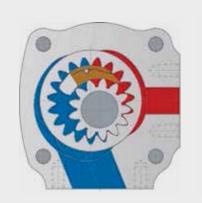
Technische Daten

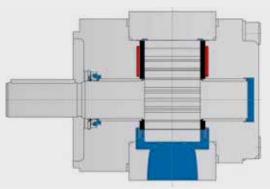
Nenngröße NG	064	080	100		
Spez. Volumen Vth [cm³/U]***	65,3	100,5			
Dauerbetriebsdruck [bar]**		250			
Spitzenbetriebsdruck [bar] max. 10 sek 15 % ED**	270				
Einschaltdruckspitze [bar]**		280			
Nenn-Drehzahl [min-1]	100 – 2.800	100 – 2.800	100 – 2.500		
Max. Drehzahl [min ⁻¹]	3.000	3.000	3.000		
Betriebsviskosität [mm²/s]	10 – 300				
Startviskosität [mm²/s]	2.000				
Betriebstemperatur [°C]	-20 bis +100				
Betriebsmedium	HL – HLP DIN 51 524 Teil 1/2				
Max. Mediumtemperatur [°C]	120				
Min. Mediumtemperatur [°C]	-40				
Max. Umgebungstemperatur [°C]	80				
Min. Umgebungstemperatur [°C]	-40				
Max. Eingangsdruck (Saugseite) [bar]		2 bar absolut			
Min. Eingangsdruck (Saugseite) [bar]	0,8	bar absolut (Start	0,6)		
Gewicht ca. [kg]	11,5	13,0	13,5		
Verschmutzungsgrad	Klasse 20/18/15 nach ISO 4406				
Lebensdauererwartung	mindestens 1x 10 ⁷ LW gegen Spitzenbetriebsdruck				
Wirkungsgrad η vol:	94 95 95		95		
Wirkungsgrad η hm:	92 93 93				
Pumpengeräusch* (gemessen im Schallraum) dB[A]	69	70	71		

 $n = 1.450 \text{ min}^{-1}$ $\Delta p = 250 \text{ bar}$ $T = 50 \,^{\circ}\text{C}$ Medium: HLP 46

Die Pumpen haben keinen Korrosionsschutz. Die Grenzwerte dürfen nicht kumuliert angewendet werden. Bitte um Rückfrage.

^{*} Gemessen im Schallmessraum Eckerle Hydraulic Division; Mikrofonabstand: 1,0 m axial


^{**} Für zulässige Drücke bei Drehzahlen von 400 bis 1.800 U/min. Bitte um Rückfrage bei höheren Drehzahlen.


 $^{{}^{***}\}quad \text{Aufgrund von Fertigungs toleranzen kann es beim F\"{o}rdervolumen geringe Abweichungen geben.}$

Innenzahnradpumpe Typ EIPC6 für Industrieanwendungen mit konstantem Verdrängungsvolumen

Merkmale

- Innenzahnradpumpe mit axialer und radialer Spaltkompensation
- Radialkompensation mit Segmenten
- Saug- und Druckseite radial
- Einsatzgebiet: Industriehydraulik
- Geräuscharmut
- Lange Lebensdauer
- Geringe Pulsation (Druckpulsation ~2 %)
- Mehrstromkombinationen auf Anfrage

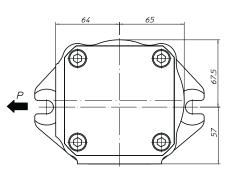
Technische Daten

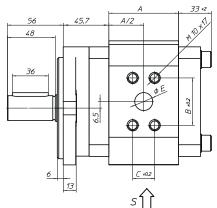
Nenngröße NG	125	160	200	250	
Spez. Volumen Vth [cm³/U]***	125,7	160,1	200,9	249,9	
Dauerbetriebsdruck [bar]**	25	50	160	140	
Spitzenbetriebsdruck [bar] max. 10 sek 15 % ED**	28	30	210	150	
Einschaltdruckspitze [bar]**	30	00	180	160	
Nenn-Drehzahl [min-1]****	400 – 2.500		400 – 2.000		
Max. Drehzahl [min ⁻¹]	2.800		2.200		
Betriebsviskosität [mm²/s]		10 -	300		
Startviskosität [mm²/s]	2.000				
Betriebstemperatur [°C]	-20 bis +100				
Betriebsmedium	HL – HLP DIN 51 524 Teil 1/2				
Max. Mediumtemperatur [°C]	80				
Min. Mediumtemperatur [°C]	-20				
Max. Umgebungstemperatur [°C]		8	0		
Min. Umgebungstemperatur [°C]		-2	20		
Max. Eingangsdruck (Saugseite) [bar]		2 bar a	bsolut		
Min. Eingangsdruck (Saugseite) [bar]		0,8 bar absol	ut (Start 0,6)		
Gewicht ca. [kg]	27,5	30	43	54	
Verschmutzungsgrad	Klasse 20/18/15 nach ISO 4406				
Lebensdauererwartung	mindestens 1x 10 ⁷ LW gegen Spitzenbetriebsdruck				
Wirkungsgrad η vol:	94	94	93	93	
Wirkungsgrad η hm:	90		91		
Pumpengeräusch* (gemessen im Schallraum) dB[A]	76	77	77	78	

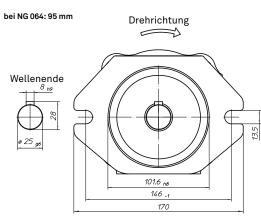
 $n = 1.450 \, min^{-1}$ $\Delta p = 250 \, bar (160 \, bar \, bei \, NG \, 200 \, und \, 140 \, bar \, bei \, NG \, 250)$ $T = 50 \, ^{\circ}C$ Medium: HLP 46

^{*} Gemessen im Schallmessraum Eckerle Hydraulic Division; Mikrofonabstand: 1,0 m axial

^{**} Für zulässige Drücke bei Drehzahlen von 400 bis 1.800 U/min. Bitte um Rückfrage bei höheren Drehzahlen.

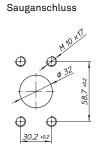

 $^{{}^{***}\}quad \text{Aufgrund von Fertigungs toleranzen kann es beim F\"{o}rdervolumen geringe Abweichungen geben.}$

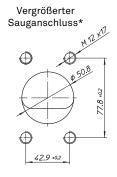

Die Pumpen haben keinen Korrosionsschutz. Die Grenzwerte dürfen nicht kumuliert angewendet werden. Bitte um Rückfrage.


EIPC3

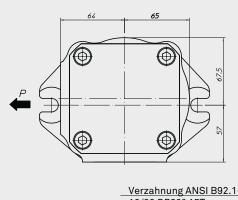
Pumpe mit SAE-2-B-Lochflansch und zylindrischer Welle

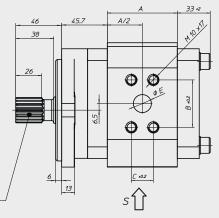
Bestellbeispiel: EIPC3-___RA23-1X

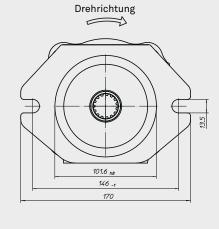




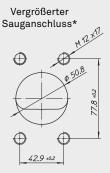
NG	Α	В	С	Е
020	58,5	47,5	22	18
025	65,0	47,5	22	18
028	70,0	47,5	22	18
032	75,0	47,5	22	18
040	86,0	52,4	26,2	20
050	100,0	52,4	26,2	20
063	118,0	52,4	26,2	25,4
064	100,0	52,4	26,2	20


* für drehzahlgeregelte Antriebe (für NG 040, 050, 064 alternativ erhältlich)



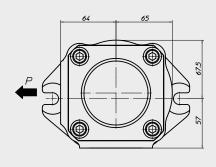

Pumpe mit SAE-2-B-Lochflansch und SAE-Verzahnung

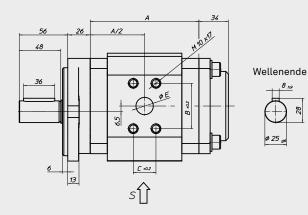
Bestellbeispiel: EIPC3-___RB23-1X

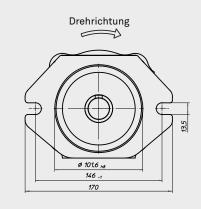


NG	Α	В	С	Е
020	58,5	47,5	22	18
025	65,0	47,5	22	18
028	70,0	47,5	22	18
032	75,0	47,5	22	18
040	86,0	52,4	26,2	20
050	100,0	52,4	26,2	20
063	118,0	52,4	26,2	25,4
064	100,0	52,4	26,2	20

* für drehzahlgeregelte Antriebe (für NG 040, 050, 064 alternativ erhältlich)

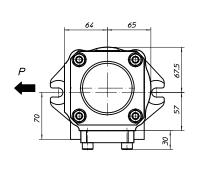

Sauganschluss

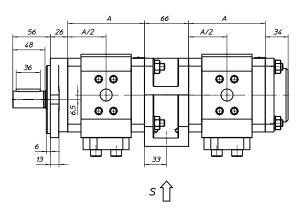


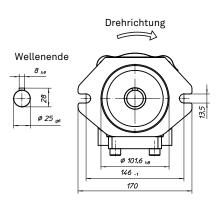

EIPC3

Pumpe mit SAE-B-2-Lochflansch und zylindrischer Welle mit Durchtriebsmöglichkeit

Bestellbeispiel: EIPC3-___RK23-1X


Sauganschluss


M 10	<u> 1</u> 1
• •	\neg
032	58.7 40.2
Φ Φ—	_
30.2 ±0.2	


NG	A	В	С	Е
020	97,9	47,5	22	18
025	104,4	47,5	22	18
032	114,4	47,5	22	18
040	125,4	52,4	26,2	20
050	139,4	52,4	26,2	20

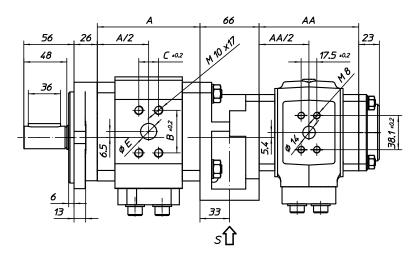
Doppelpumpe mit SAE-B-2-Lochflansch und zylindrischer Welle

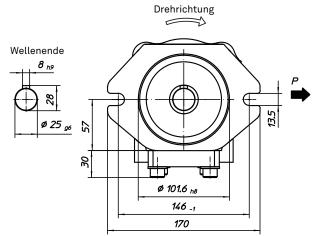
Bestellbeispiel: EIPC3-___RK20-1X+ EIPC3-___RP30-1X

NG A
020 97,9
025 104,4
032 114,4
040 125,4
050 139,4

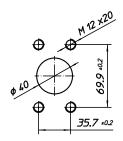
12 x22 # 12 x22 # 12 x22 # 12 x22 # 22 9 402

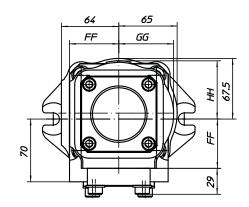
Sauganschluss


NG 020-032


NG 040-050

Druckanschlüsse siehe Einzelpumpe


Doppelpumpe mit SAE-B-2-Lochflansch und zylindrischer Welle


Bestellbeispiel: EIPC3-___RK20-1X+ EIPH2-___RP30-1X

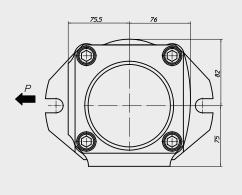
Gemeinsamer Sauganschluss

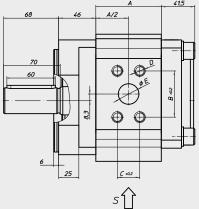
EIPC3

NG	Α	В	С	E
020	97,9	47,5	22	18
025	104,4	47,5	22	18
032	114,4	47,5	22	18
040	125,4	52,4	26,2	20
050	139,4	52,4	26,2	20

EIPH2

NG	AA	FF	GG	НН
004	71	50	55	59
005	71	50	55	59
006	73	50	55	59
800	76	50	55	59
011	82	50	55	59
013	87	50	55	60
016	92	50	55	60
019	99	55	61	65
022	105	55	61	65
025	111	55	61	65

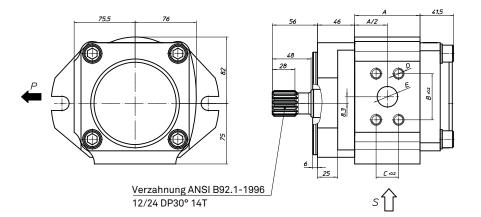

 $\label{thm:continuous} \mbox{Die Einzelstufen sind intern auch bei getrennter Ansaugung \ miteinander verbunden. Es ist daher kein Betrieb \ mit \ unterschiedlichen \ Medien \ m\"{o}glich. }$


Abmessungen

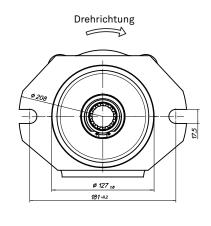
EIPC5

Pumpe mit SAE-C-2-Lochflansch und zylindrischer Welle

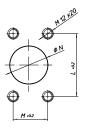
Bestellbeispiel: EIPC5-___RA23-1X



Ф
7
•


NG	Α	B*	C*	D	Е	L**	M**	N
064	81	57,2	27,8	M12x22	25,4	77,8	42,9	47,2
080	93	66,7	31,8	M14x24	31,8	77,8	42,9	47,2
100	109	66,7	31,8	M14x24	31,8	88,9	50,8	63,5

- * Druckflanschanschlüsse nach SAE J518, Hochdruckreihe (code 62)
- ** Saugflanschanschlüsse nach SAE J518, Standarddruckreihe (code 61)


Pumpe mit SAE-C-2-Lochflansch und SAE-Verzahnung

Bestellbeispiel: EIPC5I	RB23-1X
-------------------------	---------

Sauganschluss

NG	Α	B*	C*	D	Е	L**	M**	N
064	81	57,2	27,8	M12x22	25,4	77,8	42,9	47,2
080	93	66,7	31,8	M14x24	31,8	77,8	42,9	47,2
100	109	66,7	31,8	M14x24	31,8	88,9	50,8	63,5

- * Druckflanschanschlüsse nach SAE J518, Hochdruckreihe (code 62)
- ** Saugflanschanschlüsse nach SAE J518, Standarddruckreihe (code 61)

Abmessungen

NG

125

160

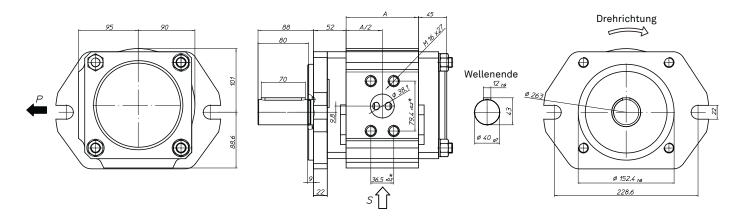
200

250

Α

115

136

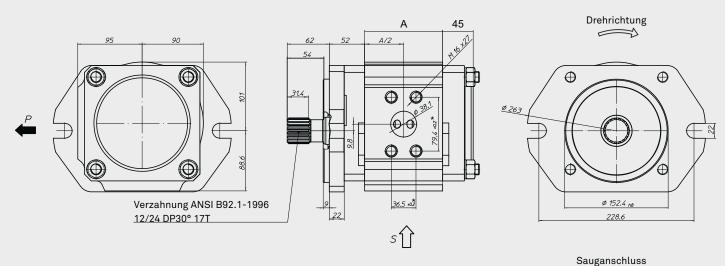

161

191

EIPC6

Pumpe mit SAE-D-2-Lochflansch und zylindrischer Welle

Bestellbeispiel: EIPC6-___RA23-1X


Sauganschluss

L**	M**	N	Р
88,9	50,8	63,5	M12x22
106,4	61,9	76,2	M16x25
120,7	69,9	88,9	M16x25
120,7	69,9	88,9	M16x25

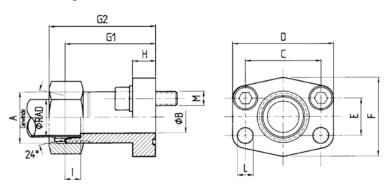
- Druckflanschanschlüsse nach SAE J518, Hochdruckreihe (code 62)
- ** Saugflanschanschlüsse nach SAE J518, Standarddruckreihe (code 61)

Pumpe mit SAE-D-2-Lochflansch und SAE-Verzahnung

Bestellbeispiel: EIPC6-___RB23-1X

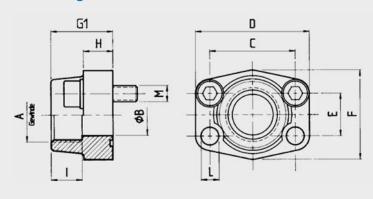
NG	Α	L**	M**	N	Р
125	115	88,9	50,8	63,5	M12x22
160	136	106,4	61,9	76,2	M16x25
200	161	120,7	69,9	88,9	M16x25
250	191	120,7	69,9	88,9	M16x25

Druckflanschanschlüsse nach SAE J518, Hochdruckreihe (code 62)


^{**} Saugflanschanschlüsse nach SAE J518, Standarddruckreihe (code 61)

EIPC

SAE Außengewindeflansch


Ausführung a

SAE Einschraubflansch

Ausführung b

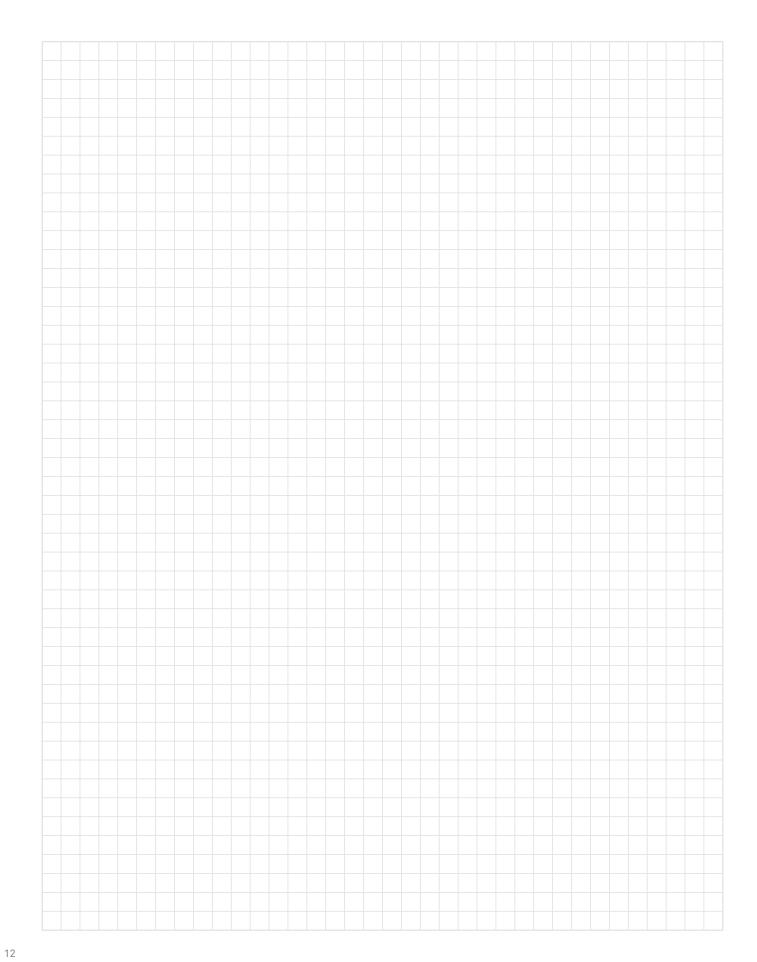
Nr.	Artikel- Nummer	Eckerle Bezeichnung	pmax	AD	Α	В	С	D	E	F	G1	G2	н	1	L	М
1a	07 07 04 0030	AD15-SAE12M22x1,5	315	15	M22x1,5	12	38,1	54	17,48	46	52	60	13	7	9	M8x25
1b	07 07 04 0026	EFG1/2-SAE12	350		G1/2"	13	38,1	54	17,48	46	36		19	19	9	M8x30
2a	07 07 04 0031	AD22-SAE34M30x2	160	22	M30x2	19	47,63	65	22,23	50	60	69	14	7,5	11,5	M10x30
2b	07 07 04 0027	EFG3/4-SAE34	350		G3/4"	19	47,63	65	22,23	50	36		18	19	11	M10x35
3a	07 07 04 0032	AD28-SAE100M36x2	160	28	M36x2	24	52,37	70	26,19	55	63	72	16	7,5	11,5	M10x30
3b	07 07 04 0028	EFG1-SAE100	315		G1"	25	52,37	70	26,19	55	38		18	22	11	M10x35
4a	07 07 04 0033	AD35-SAE114M45x2	160	35	M45x2	29	58,72	79	30,18	68	65	76	14	10,5	11,5	M10x30
4b	07 07 04 0029	EFG1 1/4-SAE114	250		G1 1/4"	32	58,72	79	30,18	68	41		21	22	11,5	M10x40
5a	07 07 04 0037	AD42-SAE112M52x2	160	42	M52x2	36	69,85	94	35,71	78	70	82	16	11	13,5	M12x35
5b	07 07 04 0034	EFG1 1/2-SAE112	200		G1 1/2"	38	69,85	94	35,71	78	45		25	24	13,5	M12x45
6b	07 07 04 0036	EFG2-SAE200	200		G2"	51	77,77	102	42,88	90	45		25	30	13,5	M12x45
7b	07 07 04 0041	EFG2 1/2-SAE212	160		G2 1/2"	63	88,9	114	50,8	105	50		25	30	13,5	M12x45
8a	07 07 04 0042	AD30-SAE100M42x2HD	400	30	M42x2	25	57,2	81	27,8	70	82	95	24	13,5	13	M12x45
9a	07 07 04 0043	AF6-404M/S38M	400	38	M52x2	29	66,6	95	31,8	78	92		27	16	15	M14x50
10b	07 07 04 0050	EFG3-SAE300-C	160		G3"	73	106,4	134	61,9	116	50		27	38	17,5	M16x50

Übersicht SAE Druck -und Saugflansche nach SAE J 518 C, ISO 6162

			Ausfü	ihrung			Ausfü	ihrung	
Bezeichnung	Saugseitig	Nr.	а	b	Druckseitig	Nr.	а	b	
EIPC3-020-032	1 1/4"	4	•	•	3/4"	2	•	•	
EIPC3-040-064	1 1/4"	4	•	•	1"	3	•	•	1)
EIPC3-040-064	2"	6		•	1"	3	•	•	2)
EIPC5-064	2"	6		•	1"*	8	•		
EIPC5-080	2"	6		•	1 1/4"*	9	•		
EIPC5-100	2 1/2"	7		•	1 1/4"*	9	•		
EIPC6-125	2 1/2"	7		•	1 1/2"*		0	0	
EIPC6-160	3"	10		•	1 1/2"*		o	0	
EIPC6-200	3 1/2"		0	0	1 1/2"*		0	0	
EIPC6-250	3 1/2"		0	0	1 1/2"*		0	0	

^{*} Hochdruckreihe

Saugflansche für Zwischengehäuse


			Ausfü	hrung
Bezeichnung	Saugseitig	Nr.	а	b
EIPC3/3 bis NG032	1 1/2"	5	•	•
EIPC3/3 ab NG040	2"	6		•

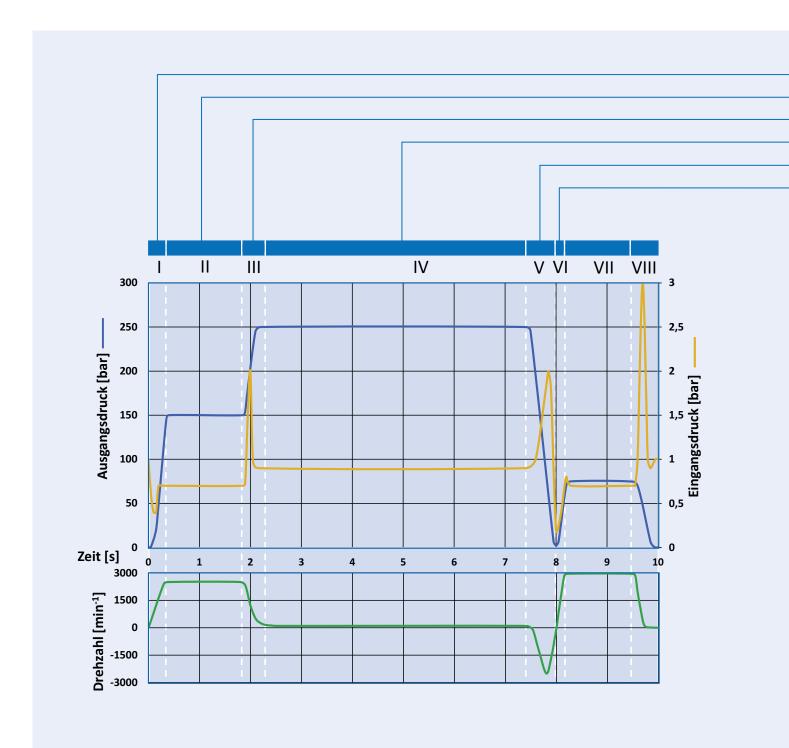
^{• =} lieferbar • = auf Anfrage

¹⁾ EIPC3-063 nicht mit 1 1/4" Sauganschluss erhältlich

²⁾ Pumpen mit vergrößerterm Sauganschluss

Notizen

Bestellbeispiel


EIPC3-032 RK23-1X

für Industrieanwendungen Baugröße 3 mit 32,1 cm³/U Drehrichtung rechts zylindrisches Wellenende mit Durchtrieb SAE/B-2-Lochflansch SAE-Flanschanschluss Revisionscode 1X

Drehzahlvariabler Betrieb

Eckerle Innenzahnradpumpen sind prinzipbedingt für den drehzahlvariablen Betrieb sehr gut geeignet. Selbst bei niedrigen Viskositäten und hohen Temperaturen des Fördermediums sind die Pumpen aufgrund der radialen und axialen Spaltkompensation in der Lage, über einen großen Drehzahlbereich, äußerst energieeffizient und hochdynamisch zu arbeiten.

Beim drehzahlvariablen Betrieb sollten jedoch gewisse Randbedingungen eingehalten werden. Zur Verdeutlichung ist im Folgenden ein exemplarischer Zyklus dargestellt.

I. Anlaufen:

Eckerle Innenzahnradpumpen sind in der Lage, aus dem Stillstand heraus Druck aufzubauen. Startet die Pumpe drucklos, ist dies problemlos möglich. Wenn systembedingt bereits im Stillstand Druck auf der Pumpe lastet, sollte Rücksprache mit Eckerle gehalten werden.

II. + VII. Pumpbetrieb:

Im Pumpenbetrieb sind Eckerle Innenzahnradpumpen in der Lage, bei jedem Druckniveau einen drehzahlabhängigen Volumenstrom bereitzustellen. Es sind hierbei die Einsatzgrenzen der jeweiligen Baugrößen zu beachten. ²⁾

III. + VIII. Abbremsen:

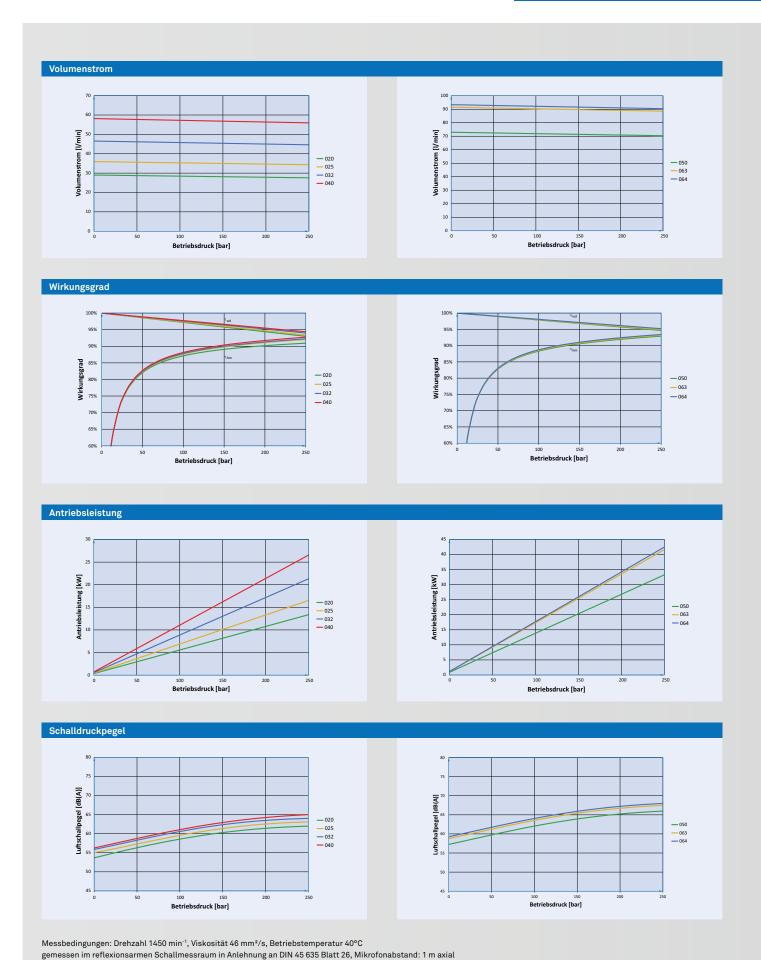
Mit Eckerle Innenzahnradpumpen können sehr hohe Verzögerungen realisiert werden. Es ist jedoch darauf zu achten, dass leitungsabhängig Druckspitzen in der Saugseite entstehen können. Diese sollten den maximal zulässigen Eingangsdruck nicht überschreiten. ^{2) 3)}

IV. Druckhaltebetrieb:

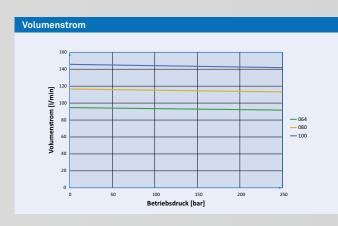
Aufgrund der Spaltkompensation sind Eckerle Innenzahnradpumpen bereits bei sehr niedrigen Drehzahlen in der Lage hohe Drücke aufzubauen. Ein Druckhaltebetrieb ist somit äußerst energieeffizient. Nach dem Druckhaltebetrieb sollte ein Pumpenbetrieb folgen, um die Pumpe zu spülen.

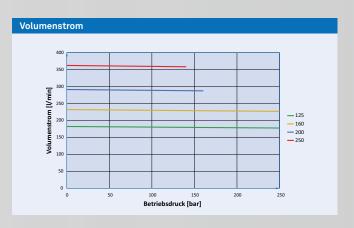
V. Reversierbetrieb:

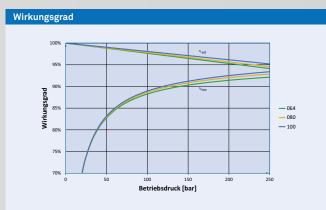
Eckerle Innenzahnradpumpen können generell hochdynamisch in entgegengesetzter Drehrichtung zum Abbau von Druckspitzen oder hydromotorisch betrieben werden. Es ist weiter darauf zu achten, dass der Ausgangsdruck stets höher ist, als der Eingangsdruck. ^{(1) (3)}

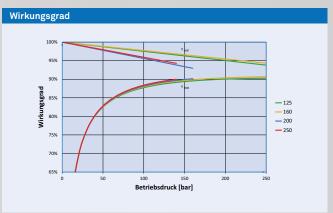

VI. Beschleunigen:

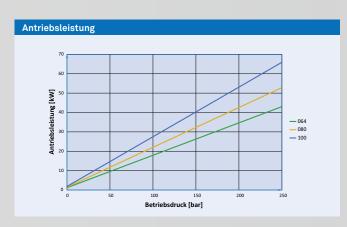
Mit Eckerle Innenzahnradpumpen können sehr große Beschleunigungen gefahren werden. Diese werden durch den Eingangsdruck, die Geometrie der Saugleitung und die Viskosität begrenzt. Der angegebene Mindesteingangsdruck der Baureihen darf hierbei jedoch nicht unterschritten werden. ^{1) 3)}


¹⁾ Siehe Kennlinien

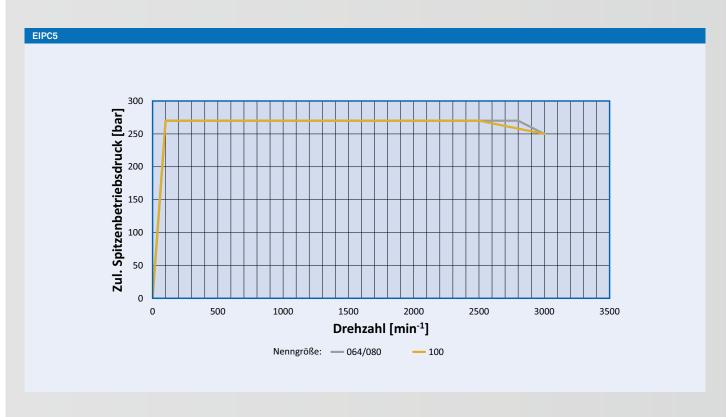

²⁾ Siehe Technische Daten


³⁾ Zur Vermeidung von kritischen Betriebspunkten empfehlen wir eine pumpennahe Messung des Ein- und Ausgangdrucks der Pumpe mit mindestens 1 kHz Abtastrate bei Erstinbetriebnahme eines neuen Pumpenzyklus.




EIPC5 EIPC6





Messbedingungen: Drehzahl 1450 min⁻¹, Viskosität 46 mm²/s, Betriebstemperatur 40°C gemessen im reflexionsarmen Schallmessraum in Anlehnung an DIN 45 635 Blatt 26, Mikrofonabstand: 1 m axial

Kennlinien

Zulässige Spitzenbetriebsdrücke in Abhängigkeit der Drehzahl

Spitzenbetriebsdrücke für maximal 10 sek bzw. 15% der Einschaltdauer zulässig

Erfahren Sie mehr: eckerle.com

Alle angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im rechtlichen Sinne zu verstehen. Technische Änderungen vorbehalten.

erhältlich bei: sales@atphydraulik.ch atphydraulik.com

Eckerle Technologies GmbH Otto-Eckerle-Straße 6/12A 76316 Malsch, Germany Tel. +49 (0) 7246 9204-0 sales.EHD@eckerle.com

